Lactate dehydrogenase (LDH) is a tetramer enzyme that converts pyruvate to lactate reversibly. This enzyme becomes important because it is associated with diseases such as cancers, heart disease, liver problems, and most importantly, corona disease. As a system-based method, proteochemometrics does not require knowledge of the protein's three-dimensional structure, but rather depends on the amino acid sequence and protein descriptors. Here, we applied this methodology to model a set of LDHA and LDHB isoenzyme inhibitors. To implement the proteochemetrics method, the camb package in the R Studio Server programming environment was used. The activity of 312 compounds of LDHA and LDHB isoenzyme inhibitors from the valid Binding DB database was retrieved. The proteochemometrics method was applied to three machine learning algorithms gradient amplification model, random forest, and support vector machine as regression methods to find the best model. Through the combination of different models into an ensemble (greedy and stacking optimization), we explored the possibility of improving the performance of models. For the RF best ensemble model of inhibitors of LDHA and LDHB isoenzymes, and were 0.66 and 0.62, respectively. LDH inhibitory activation is influenced by Morgan fingerprints and topological structure descriptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324138PMC
http://dx.doi.org/10.1186/s13065-023-00991-6DOI Listing

Publication Analysis

Top Keywords

ldha ldhb
16
lactate dehydrogenase
8
ldhb isoenzyme
8
isoenzyme inhibitors
8
study interaction
4
interaction space
4
space lactate
4
dehydrogenase isoforms
4
ldha
4
isoforms ldha
4

Similar Publications

The brain's substantial metabolic requirements, consuming a substantial fraction of the body's total energy despite its relatively small mass, necessitate sophisticated metabolic mechanisms for efficient energy distribution and utilization. The astrocyte-neuron lactate shuttle (ANLS) hypothesis has emerged as a fundamental framework explaining the metabolic cooperation between astrocytes and neurons, whereby astrocyte-derived lactate serves as a crucial energy substrate for neurons. This review synthesizes current understanding of brain energy metabolism, focusing on the dual roles of lactate as both an energy substrate and a signaling molecule.

View Article and Find Full Text PDF

Ferroptosis is an oxidative, non-apoptotic cell death frequently inactivated in cancer, but the underlying mechanisms in oncogene-specific tumors remain poorly understood. Here, we discover that lactate dehydrogenase (LDH) B, but not the closely related LDHA, subunits of active LDH with a known function in glycolysis, noncanonically promotes ferroptosis defense in KRAS-driven lung cancer. Using murine models and human-derived tumor cell lines, we show that LDHB silencing impairs glutathione (GSH) levels and sensitizes cancer cells to blockade of either GSH biosynthesis or utilization by unleashing KRAS-specific, ferroptosis-catalyzed metabolic synthetic lethality, culminating in increased glutamine metabolism, oxidative phosphorylation (OXPHOS) and mitochondrial reactive oxygen species (mitoROS).

View Article and Find Full Text PDF

Synthesis of 1-Hydroxy(and 1-Alkoxy, 1-Acyloxy)-1H-indoles and evaluations of their suppressive activities against tumor growth through inhibiting lactate dehydrogenase A.

Eur J Med Chem

February 2025

Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea. Electronic address:

Inhibition of lactate dehydrogenase (LDH) has emerged as a promising cancer therapy strategy due to its essential role in the metabolic transformation of cancer cells. In this study, 53 derivatives of 1-hydroxy(and 1-alkoxy, 1-acyloxy)indoles were designed, synthesized, and biologically evaluated. Several multi-substituted 1-hydroxy(and 1-alkoxy, 1-acyloxy)indole compounds exhibited inhibitory activity against the LDH-A isoform (LDHA).

View Article and Find Full Text PDF

Dipeptide alanine-glutamine ameliorates retinal neurodegeneration in an STZ-induced rat model.

Front Pharmacol

November 2024

Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

Introduction: Diabetic retinopathy (DR) is a common complication of diabetes. Retinal neuronal degeneration is an early event in DR, indicated by the declined electroretinogram (ERG). Dipeptide alanine-glutamine (Ala-Gln) is widely used as a nutritional supplement in the clinic and has anti-inflammatory effects on the gastrointestinal system.

View Article and Find Full Text PDF
Article Synopsis
  • Heart failure (HF) has high mortality and rehospitalization rates, prompting research into new treatments like Jianxin (JX) granules, a Traditional Chinese Medicine formulation that needs further study for its effectiveness and mechanisms.
  • In a study using rats with HF induced by coronary artery ligation, researchers compared JX granules to a model group and standard treatment (Sacubitril/Valsartan) over four weeks, analyzing heart function and various cellular factors.
  • Results showed JX granules significantly improved heart performance by enhancing factors like left ventricular ejection fraction and reducing harmful conditions like cardiac fibrosis and oxidative stress, indicating potential as a therapeutic option for HF.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!