Background: Triglyceride-rich lipoproteins (TRL) and low-density lipoproteins (LDL) are associated positively whereas high-density lipoproteins (HDL) are associated inversely with the development of new-onset type 2 diabetes (T2D). Here we studied potential associations between these lipoprotein particle concentrations and the risk of developing microvascular complications in patients with established T2D.

Methods: Lipoprotein particle concentrations (TRLP, LDLP, and HDLP) were determined in 278 patients with T2D participating in a primary care-based longitudinal cohort study (Zwolle Outpatient Diabetes project Integrating Available Care [ZODIAC] study) leveraging the Vantera nuclear magnetic resonance (NMR) platform using the LP4 algorithm. Associations between lipoprotein particles and incident microvascular complications (nephropathy, neuropathy, and retinopathy) were assessed using Cox proportional hazards regression models.

Results: In total, 136 patients had microvascular complications at baseline. During a median follow-up of 3.2 years, 49 (34.5%) of 142 patients without microvascular complications at baseline developed new-onset microvascular complications. In multivariable Cox proportional hazards regression analyses, both total LDLP and HDLP concentrations, but not total TRLP concentrations, were positively associated with an increased risk of developing any microvascular complications after adjustment for potential confounding factors, including age, sex, disease duration, HbA1c levels, history of macrovascular complications, and statin use (adjusted hazard ratio [HR] per 1 SD increment: 1.70 [95% CI 1.24-2.34], P < 0.001 and 1.63 [95% CI 1.19-2.23], P = 0.002, respectively). When analyzing each microvascular complication individually, total LDLP concentrations were positively associated with retinopathy (adjusted HR 3.35, 95% CI 1.35-8.30, P = 0.009) and nephropathy (adjusted HR 2.13, 95% CI 1.27-3.35, P = 0.004), and total HDLP concentrations with neuropathy (adjusted HR 1.77, 95% CI 1.15-2.70, P = 0.009). No significant associations were observed for lipoprotein particle subfractions.

Conclusions: Total lipoprotein particle concentrations of both LDL and HDL associate positively with an increased risk of developing microvascular complications in T2D. We propose that the protective role of HDL on the development of microvascular complications may be lost in established T2D.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327395PMC
http://dx.doi.org/10.1186/s12933-023-01909-1DOI Listing

Publication Analysis

Top Keywords

microvascular complications
28
particle concentrations
12
risk developing
12
developing microvascular
12
increased risk
8
complications
8
complications patients
8
type diabetes
8
associations lipoprotein
8
lipoprotein particle
8

Similar Publications

Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow.

View Article and Find Full Text PDF

Background: An increased risk of multiple secondary diseases has been observed in individuals with diabetes, which contributes to the growing economic burden. Few studies have established the connection of blood urea nitrogen/albumin (BAR) with diabetes, and its link to subsequent diabetic complications and mortality remains unclear. We aimed to explore the association of BAR with the onset of type 2 diabetes mellitus (T2DM) and its dynamic progression.

View Article and Find Full Text PDF

The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications.

Int J Mol Sci

January 2025

Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan.

Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies.

View Article and Find Full Text PDF

Background: Microvascular decompression (MVD) is the gold-standard surgical treatment for cranial nerve compression disorders, including trigeminal neuralgia (TN), hemifacial spasm (HFS), and glossopharyngeal neuralgia (GPN). This review synthesizes historical milestones, recent advances, and evolving techniques in MVD, with a primary focus on these conditions.

Methods: A comprehensive literature review was conducted using databases such as PubMed, SpringerLink, Google Scholar, BioMed Central, Scopus, and ScienceDirect.

View Article and Find Full Text PDF

Microvascular decompression is considered a first-line treatment in classical trigeminal neuralgia. Teflon is the material commonly used. The use of autologous muscle has been occasionally reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!