Terahertz spectroscopy has proved to be an essential tool for the study of condensed phase materials. Terahertz spectroscopy probes the low-frequency vibrational dynamics of atoms and molecules, usually in the condensed phase. These nuclear dynamics, which typically involve displacements of entire molecules, have been linked to bulk phenomena ranging from phase transformations to semiconducting efficiency. The terahertz region of the electromagnetic spectrum has historically been referred to as the 'terahertz gap', but this is a misnomer, as there exist a multitude of methods for accessing terahertz frequencies, and now there are cost-effective instruments that have made terahertz studies much more user-friendly. This Review highlights some of the most exciting applications of terahertz vibrational spectroscopy so far, and provides an in-depth overview of the methods of this technique and its utility to the study of the chemical sciences.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41570-023-00487-wDOI Listing

Publication Analysis

Top Keywords

materials terahertz
8
terahertz vibrational
8
vibrational spectroscopy
8
terahertz spectroscopy
8
condensed phase
8
terahertz
7
investigating function
4
function design
4
design molecular
4
molecular materials
4

Similar Publications

Angle-controlled strong and weak coupling in photon molecules.

Sci Rep

January 2025

Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.

Strong light-matter coupling occurs when the rate of energy exchange between the electromagnetic mode and the molecular ensemble exceeds the competitive dissipation process. Coupled photon molecules with near-field light-matter interactions may produce new hybridized states when they reach the strong coupling region. Tunable Terahertz (THz) meta materials can be used to design sensors, optical modulators, etc.

View Article and Find Full Text PDF

Porous polymers: structure, fabrication and application.

Mater Horiz

January 2025

Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.

The porous polymer is a common and fascinating category within the vast family of porous materials. It offers valuable features such as sufficient raw materials, easy processability, controllable pore structures, and adjustable surface functionality by combining the inherent properties of both porous structures and polymers. These characteristics make it an effective choice for designing functional and advanced materials.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) have emerged as the most promising materials due to superior optoelectronic properties and great applications spanning from photovoltaics to photonics. Absorption spectroscopy provides a broad and deep insight into the carrier dynamics of MHPs, and is a critical complement to fluorescence and scattering spectroscopy. However, absorption spectroscopy is often misunderstood or underestimated, being seen as UV-vis spectroscopy only, which can lead to various misinterpretations.

View Article and Find Full Text PDF

We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.

View Article and Find Full Text PDF

A Novel Hollow Core Antiresonant Fiber-Based Biosensor for Blood Component Detection in the THz Regime.

Biomed Phys Eng Express

January 2025

Electronics and Communication Engineering, SRM Institute of Science and Technology (Deemed to be University), Tech Park, SRM Nagar, Kattankulathur, Kattankulathur, Tamilnadu, 603203, INDIA.

This article proposes a novel biosensor based on a five-semi-circular cladding tube hollow core antiresonant fiber (HC-ARF) with a frequency range of 0.5-2.8 THz, using Zeonex as the background material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!