Gene-expressing compartments assembled from simple, modular parts, are a versatile platform for creating minimal synthetic cells with life-like functions. By incorporating gene regulatory motifs into their encapsulated DNA templates, in situ gene expression and, thereby, synthetic cell function can be controlled according to specific stimuli. In this work, cell-free protein synthesis within synthetic cells was controlled using light by encoding genes of interest on light-activated DNA templates. Light-activated DNA contained a photocleavable blockade within the T7 promoter region that tightly repressed transcription until the blocking groups were removed with ultraviolet light. In this way, synthetic cells were activated remotely, in a spatiotemporally controlled manner. By applying this strategy to the expression of an acyl homoserine lactone synthase, BjaI, quorum-sensing-based communication between synthetic cells and bacteria was controlled with light. This work provides a framework for the remote-controlled production and delivery of small molecules from nonliving matter to living matter, with applications in biology and medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449621PMC
http://dx.doi.org/10.1038/s41589-023-01374-7DOI Listing

Publication Analysis

Top Keywords

synthetic cells
20
cells bacteria
8
dna templates
8
controlled light
8
light-activated dna
8
synthetic
6
cells
5
engineering cellular
4
cellular communication
4
communication light-activated
4

Similar Publications

N-Glycosylation modulators for targeted manipulation of glycosylation for monoclonal antibodies.

Appl Microbiol Biotechnol

January 2025

School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

Monoclonal antibodies are extensively used as biotherapeutics for treatment of a variety of diseases. Glycosylation of therapeutic antibodies is considered a critical quality attribute as it influences the effector function, circulatory half-life, immunogenicity, and eventually efficacy and patient safety. During upstream process development, media components play a significant role in determining the glycosylation profile.

View Article and Find Full Text PDF

BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.

View Article and Find Full Text PDF

Bacterial biofilms are surface-attached communities consisting of non-replicating persister cells encased within an extracellular matrix of biomolecules. Unlike bacteria that have acquired resistance to antibiotics, persister cells enable biofilms to demonstrate innate tolerance toward all classes of conventional antibiotic therapies. It is estimated that 50-80% of bacterial infections are biofilm associated, which is considered the underlying cause of chronic and recurring infections.

View Article and Find Full Text PDF

Serotonergic Mechanisms in Proteinoid-Based Protocells.

ACS Chem Neurosci

January 2025

Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.

This study examines the effects of incorporating serotonin (5-HT) into proteinoid microspheres. It looks at the microspheres' structure and electrochemical properties. Proteinoid-serotonin assemblies have better symmetry and membrane organization than pristine proteinoids.

View Article and Find Full Text PDF

The intricacy, diversity, and heterogeneity of cancers make research focus on developing multimodal synergistic therapy strategies. Herein, an oxygen (O) self-feeding peroxisomal lactate oxidase (LOX)-based LOX-Ce6-Mn (LCM) was synthesized using a biomineralization approach, which was used for cascade chemodynamic therapy (CDT)/photodynamic therapy (PDT) combination therapies through dual depletion of lactate (Lac) and reactive oxygen species (ROS) generation. After endocytosis into tumor cells, the endogenous hydrogen peroxide (HO) can be converted to O by the catalase-like (CAT) activity of LCM, which can facilitate the catalytic reaction of LOX to consume more Lac and alleviate tumor hypoxia to enhance the generation of singlet oxygen (O) upon light irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!