Dissolving microneedles-based programmed delivery system for enhanced chemo-immunotherapy of melanoma.

J Control Release

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. Electronic address:

Published: August 2023

Immune checkpoint blockade, especially the programmed cell death ligand 1 (PD-L1) blockade, has revolutionized the treatment of melanoma. However, PD-1/PD-L1 monotherapy leads to unsatisfactory therapeutic outcomes. The immunotherapy of melanoma could be improved by adding doxorubicin (DOX), which triggers immunogenic cell death (ICD) effect to activate anti-tumor immunity. Additionally, microneedles, especially dissolving microneedles (dMNs), can further enhance outcomes of chemo-immunotherapy due to the physical adjuvant effect of dMNs. Herein, we developed the dMNs-based programmed delivery system that incorporated pH-sensitive and melanoma-targeting liposomes to co-deliver DOX and siPD-L1, achieving enhanced chemo-immunotherapy of melanoma (si/DOX@LRGD dMNs). The incorporated si/DOX@LRGD LPs demonstrated uniform particle size, pH-sensitive drug release, high in vitro cytotoxicity and targeting ability. Besides, si/DOX@LRGD LPs effectively downregulated the expression of PD-L1, induced tumor cell apoptosis and triggered ICD effect. The si/DOX@LRGD LPs also showed deep penetration (approximately 80 μm) in 3D tumor spheroids. Moreover, si/DOX@LRGD dMNs dissolved rapidly into the skin and had sufficient mechanical strength to penetrate skin, reaching a depth of approximately 260 μm in mice skin. In mice model of melanoma tumor, si/DOX@LRGD dMNs exhibited better anti-tumor efficacy than monotherapy by dMNs and tail intravenous injection at the same dose. This was due to the higher cytotoxic CD8 T cells and the secreted cytotoxic cytokine IFN-γ evoked by si/DOX@LRGD dMNs, thereby eliciting strong T-cell mediated immune response and resulted in enhanced anti-tumor effects. In conclusion, these findings suggested that si/DOX@LRGD dMNs provided a promising and effective strategy for enhanced chemo-immunotherapy of melanoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2023.07.002DOI Listing

Publication Analysis

Top Keywords

si/dox@lrgd dmns
20
enhanced chemo-immunotherapy
12
chemo-immunotherapy melanoma
12
si/dox@lrgd lps
12
programmed delivery
8
delivery system
8
cell death
8
dmns
8
si/dox@lrgd
8
melanoma
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!