AI Article Synopsis

Article Abstract

Introduction: Radiofrequency electromagnetic fields (RF-EMFs) are one of the risk factors for male reproductive health and melatonin can be an ideal candidate for therapeutic development against RF-induced male fertility problems due to its antioxidant properties. The possible therapeutic role of melatonin in the destructive effects of 2100MHz RF radiation on rat sperm characteristics is investigated in the present study.

Methods: Wistar albino rats were divided into four groups and the experiment continued for ninety consecutive days; Control, Melatonin (10mg/kg, subcutaneously), RF (2100MHz, thirty minutes per day, whole-body), and RF+Melatonin groups. Left caudal epididymis and ductus deferens tissues were placed in sperm wash solution (at 37°C) and dissected. The sperms were counted and stained. Measurements of the perinuclear ring of the manchette and posterior portion of the nucleus (ARC) were performed and the sperms were examined at an ultrastructural level. All of the parameters were evaluated statistically.

Results: The percentages of abnormal sperm morphology were significantly increased with RF exposure, while the total sperm count was significantly decreased. RF exposure also showed harmful effects on acrosome, axoneme, mitochondrial sheath, and outer dense fibers at the ultrastructural level. The number of total sperms, sperms with normal morphology increased, and ultrastructural appearance returned to normal by melatonin administration.

Discussion: The data showed that melatonin may be a beneficial therapeutic agent for long-term exposure of 2100MHz RF radiation-related reproductive impairments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.androl.2023.100371DOI Listing

Publication Analysis

Top Keywords

long-term exposure
8
exposure 2100mhz
8
radiation rat
8
rat sperm
8
sperm characteristics
8
ultrastructural level
8
morphology increased
8
melatonin
6
sperm
5
therapeutic
4

Similar Publications

Ambient Air Pollution and COPD: The Multiethnic Cohort Study.

Ann Am Thorac Soc

January 2025

University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, California, United States.

Rationale: Globally, in 2019, chronic obstructive pulmonary disease (COPD) was the third leading cause of death. While tobacco smoking is the predominant risk factor, the role of long-term air pollution exposure in increasing risk of COPD remains unclear. Moreover, there are few studies that have been conducted in racial and ethnic minoritized and socioeconomically diverse populations, while accounting for smoking history and other known risk factors.

View Article and Find Full Text PDF

Long-term smoking contributes to aging frailty and inflammatory response.

Biomol Biomed

January 2025

China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China; Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

In recent years, the health challenges linked to frailty in the elderly, particularly those worsened by cigarette smoke, have become more pronounced. However, quantitative studies examining the impact of smoking dosage on frailty in this population remain limited. To address this gap, we developed a model using smoke-exposed elderly mice.

View Article and Find Full Text PDF

Prescriptions (Rx) for Prevention: Clinical Tools for Integrating Environmental Health into Pediatric Clinical Care.

J Public Health Manag Pract

January 2025

Department of Environmental Medicine and Public Health (Mr Bland, Dr Zajac, Ms Guel, Dr Pendley, Dr Galvez, Dr Sheffield), Icahn School of Medicine at Mount Sinai, New York, New York; Harvard Kenneth C. Griffin Graduate School of Arts and Sciences (Mr Wilson), Boston, Massachusetts; Environmental Research and Translation for Health (EaRTH) Center (Ms Charlesworth), University of California, San Francisco, California; Community Engagement Core, Environmental Health Sciences Center at Department of Environmental Medicine (Dr Korfmacher), University of Rochester Medical Center, Rochester, New York; Pediatric Environmental Health and Cincinnati Children's Hospital Medical Center (Dr Newman), Cincinnati, Ohio; Philadelphia Regional Center for Children's Environmental Health, Center of Excellence in Environmental Toxicology, Perelman School of Medicine (Dr Howarth), University of Pennsylvania, Philadelphia, Pennsylvania; and Division of Academic General Pediatrics, Children's Hospital at Montefiore (Dr Balk), Albert Einstein College of Medicine, Bronx, New York.

The integration of environmental health (EH) into routine clinical care for children is in its early stages. The vision of pediatric EH is that all clinicians caring for children are aware of and able to help connect families to needed resources to reduce harmful environmental exposures and increase health-enhancing ones. Environmental exposures include air pollution, substandard housing, lead, mercury, pesticides, consumer products chemicals, drinking water contaminants, industrial facility emissions and, increasingly, climate change-related extreme weather and heat events.

View Article and Find Full Text PDF

Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used.

View Article and Find Full Text PDF

Endocrine Disrupting Toxicity of Bisphenol A and Its Analogs: Implications in the Neuro-Immune Milieu.

J Xenobiot

January 2025

Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.

Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances that are able to interfere with hormonal systems and alter their physiological signaling. EDCs have been recognized as a public health issue due to their widespread use, environmental persistence and the potential levels of long-term exposure with implications in multiple pathological conditions. Their reported adverse effects pose critical concerns about their use, warranting their strict regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!