Legacy nitrogen (N) originating from net N inputs (NNI) may pose ongoing threats to riverine water quality worldwide and even cause serious time-lags between water quality restoration and NNI declines. A better understanding of legacy N effects on riverine N pollutions in different seasons is essential to improve riverine water quality. Here, we investigated contributions of legacy N on riverine dissolved inorganic N (DIN) changes in different seasons and quantified spatio-seasonal time-lags in the Songhuajiang River basin (SRB), a hotspot of NNI with four distinct seasons, by exploring long-term (1978-2020) NNI-DIN relationships. Results firstly showed a significant seasonal difference in NNI, with the highest value observed in spring (average, 2184.1 kg/km), 1.2, 5.0, and 4.6 times higher than that in summer, autumn, and winter, respectively. Cumulative legacy N had dominated riverine DIN changes, with a relative contribution of approximately 64% in 2011-2020, causing time-lags of 11-29 years across the SRB. The longest seasonal lags existed in spring (average, 23 years) owing to greater impacts of legacy N to riverine DIN changes in this season. Mulch film application, soil organic matter accumulation, N inputs, and snow cover were identified as the key factors that strengthened seasonal time-lags by collaboratively enhancing legacy N retentions in soils. Furthermore, a machine learning-based model system suggested that timescales for water quality improvement (DIN, ≤1.5 mg/L) varied considerably (from 0 to >29 years, Improved N Management-Combined scenario) across the SRB, with greater lag effects contributing to slower recovery. These findings can provide a more comprehensive insight into sustainable basin N management in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120292DOI Listing

Publication Analysis

Top Keywords

water quality
20
din changes
12
songhuajiang river
8
river basin
8
quality improvement
8
riverine water
8
legacy riverine
8
spring average
8
riverine din
8
riverine
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!