Fibrosis of implants remains a significant challenge in the use of biomedical devices and tissue engineering materials. Antifouling coatings, including synthetic zwitterionic coatings, have been developed to prevent fouling and cell adhesion to several implantable biomaterials. While many of these coatings need covalent attachment, a conceptually simpler approach is to use a spontaneous self-assembly event to anchor the coating to a surface. This could simplify material processing through highly specific molecular recognition. Herein, we investigate the ability to utilize directional supramolecular interactions to anchor an antifouling coating to a polymer surface containing a complementary supramolecular unit. A library of controlled copolymerization of ureidopyrimidinone methacrylate (UPyMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) was prepared and their UPy composition was assessed. The MPC-UPy copolymers were characterized by H NMR, Fourier transform infrared (FTIR), and gel permeation chromatography (GPC) and found to exhibit similar mol % of UPy as compared to feed ratios and low dispersities. The copolymers were then coated on an UPy elastomer and the surfaces were assessed for hydrophilicity, protein absorption, and cell adhesion. By challenging the coatings, we found that the antifouling properties of the MPC-UPy copolymers with more UPy mol % lasted longer than the MPC homopolymer or low UPy mol % copolymers. As a result, the bioantifouling nature could be tuned to exhibit spatio-temporal control, namely, the longevity of a coating increased with UPy composition. In addition, these coatings showed nontoxicity and biocompatibility, indicating their potential use in biomaterials as antifouling coatings. Surface modification employing supramolecular interactions provided an approach that merges the simplicity and scalability of nonspecific coating methodology with the specific anchoring capacity found when using conventional covalent grafting with longevity that could be engineered by the supramolecular composition itself.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10428092 | PMC |
http://dx.doi.org/10.1021/acsbiomaterials.3c00425 | DOI Listing |
Small
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Elastomers have been widely employed in various industrial products such as tires, actuators, dampers, and sealants. While various methods have been developed to strengthen elastomers, achieving continuously high energy dissipation with fast room-temperature recovery remains challenging, prompting the need for further structural optimization. Herein, high energy dissipated and fast recoverable double-network (DN) elastomers are fabricated, in which the supramolecular polymers of complementary adenine and thymine serve as the first network and the covalently cross-linked soft polymer as the second network.
View Article and Find Full Text PDFChempluschem
December 2024
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4-6, 44227, Dortmund, Germany.
The critical micelle concentration is an important property of supramolecular detergents. Two dynamic light scattering approaches have been developed for critical micelle concentration analysis, i. e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany.
Intrinsically disordered proteins (IDPs) adopt ensembles of rapidly fluctuating heterogeneous conformations, influencing their binding capabilities and supramolecular transitions. The primary conformational descriptors for understanding IDP ensembles-the radius of gyration (), measured by small-angle X-ray scattering (SAXS), and the root mean square (rms) end-to-end distance (), probed by fluorescent resonance energy transfer (FRET)-are often reported to produce inconsistent results regarding IDP expansion as a function of denaturant concentration in the buffer. This ongoing debate surrounding the FRET-SAXS discrepancy raises questions about the overall reliability of either method for quantitatively studying IDP properties.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Department of Chemistry, University of Saskatchewan, 110 Science Place, Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada. Electronic address:
Flax fiber modified composite (FFMC) duplex systems with unique sorbent and antipathogen properties were developed by physisorption of chitosan onto modified flax fibers by a facile method. Complementary characterization of the FFMCs (Raman, NMR, and IR, SEM, XRD, TGA and BET analysis) revealed variable composite morphology with incremental chitosan doping and supramolecular interactions between the fiber substrate and immobilized chitosan. Dye adsorption profiles of FFMCs with Rose Bengal corroborated the role of physisorption with an adsorption capacity that rises to 17.
View Article and Find Full Text PDFMacromol Rapid Commun
November 2024
Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Le Mans, 72085 Cedex 9, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!