Optimum conditions for glucose syrups production from white sorghum were studied through sequential liquefaction and saccharification processes. In the liquefaction process, a maximum dextrose equivalent (DE) of 10.98 % was achieved using 30 % (w/v) of starch and Termamyl ɑ-amylase from Bacillus licheniformis. Saccharification was performed by free and immobilized amyloglucosidase from Rhizopus mold at 1 % (w/v). DE values of 88.32 % and 79.95 % were obtained from 30 % (w/v) of starch with, respectively, free and immobilized enzyme. The immobilized Amyloglucosidase in calcium alginate beads showed reusable capacity for up to 6 cycles with 46 % of the original activity retained. The kinetic behaviour of immobilized and free enzyme gives K value of 22.13 and 16.55 mg mL and V of 0.69 and 1.61 mg mL min , respectively. The hydrolysis yield using immobilized amyloglucosidase were lower than that of the free one. However, it is relevant to reuse enzyme without losing activity in order to trim down the overall costs of enzymatic bioprocesses as starch transformation into required products in industrial manufacturing. Hydrolysis of sorghum starch using immobilized amyloglucosidase represents a promising alternative towards the development of the glucose syrups production process and its utilization in various industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.202300071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!