A comprehensive understanding of protein folding and biomolecular self-assembly in the intracellular environment requires obtaining a microscopic view of the crowding effects. The classical view of crowding explains biomolecular collapse in such an environment in terms of the entropic solvent excluded volume effects subjected to hard-core repulsions exerted by the inert crowders, neglecting their soft chemical interactions. In this study, the effects of nonspecific, soft interactions of molecular crowders in regulating the conformational equilibrium of hydrophilic (charged) polymers are examined. Using advanced molecular dynamics simulations, collapse free energies of an uncharged, a negatively charged, and a charge-neutral 32-mer generic polymer are computed. The strength of the polymer-crowder dispersion energy is modulated to examine its effect on polymer collapse. The results show that the crowders preferentially adsorb and drive the collapse of all three polymers. The uncharged polymer collapse is opposed by the change in solute-solvent interaction energy but is overcompensated by the favorable change in the solute-solvent entropy as observed in hydrophobic collapse. However, the negatively charged polymer collapses with a favorable change in solute-solvent interaction energy due to reduction in the dehydration energy penalty as the crowders partition to the polymer interface and shield the charged beads. The collapse of a charge-neutral polymer is opposed by the solute-solvent interaction energy but is overcompensated by the solute-solvent entropy change. However, for the strongly interacting crowders, the overall energetic penalty decreases since the crowders interact with polymer beads via cohesive bridging attractions to induce polymer collapse. These bridging attractions are found to be sensitive to the binding sites of the polymer, since they are absent in the negatively charged or uncharged polymers. These interesting differences in thermodynamic driving forces highlight the crucial role of the chemical nature of the macromolecule as well as of the crowder in determining the conformational equilibria in a crowded milieu. The results emphasize that the chemical interactions of the crowders should be explicitly considered to account for the crowding effects. The findings have implications in understanding the crowding effects on the protein free energy landscapes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.3c01319 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!