Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Muscle-invasive urothelial carcinoma of the bladder (MIBC) has been treated with cisplatin-based chemotherapy for over 30 years. With the advent of immune checkpoint inhibitors, antibody drug conjugates and FGFR3 inhibitors new therapeutic options have been approved for patients with urothelial carcinoma (UC) and are still under investigation regarding association between patients' response and recently defined molecular subtypes. Unfortunately, similar to chemotherapy, only a fraction of UC patients responds to these new treatment approaches. Thus, either further new efficacious therapeutic options for treatment of individual subtypes or new approaches to overcome treatment resistance and to increase patients' response to standard of care treatment are needed.Epigenetic modifications of DNA and chromatin are known to mediate cellular plasticity or treatment resistance, and the responsible epigenetic regulators are frequently mutated or aberrantly expressed in UC. Thus, these enzymes provide targets for novel drug combination therapies to "episensitize" toward approved standard therapies by epigenetic priming. In general, these epigenetic regulators comprise writers and erasers like DNA methyltransferases and DNA demethylases (for DNA methylation), histone methyltransferases and histone demethylases (for histone methylation), as well as acetyl transferases and histone deacetylases (for histone and nonhistone acetylation). Such modifications, e.g., acetyl groups, are recognized by further epigenetic reader proteins, e.g., like the bromodomain and extra-terminal domain (BET) family proteins that often interact in multi-protein complexes and finally regulate chromatin conformation and transcriptional activity.Concurringly, epigenetic regulators target a plethora of cellular functions. Their pharmaceutical inhibitors often inhibit enzymatic activity of more than one isoenzyme or may have further noncanonical cytotoxic effects. Thus, analysis of their functions in UC pathogenesis as well as of the antineoplastic capacity of corresponding inhibitors alone or in combination with other approved drugs should follow a multidimensional approach. Here, we present our standard approach to analyze cellular effects of new epigenetic inhibitors on UC cells alone to define their potency and to conclude on putative reasonable combination therapy partners. We further describe our approach to identify efficacious synergistic combination therapies (e.g., with cisplatin or PARP inhibitors) that may have reduced normal toxicity through dose reduction, which can then be further analyzed in animal experiments. This approach may also serve as prototype for the preclinical evaluation of other epigenetic treatment approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3291-8_16 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!