A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicted Proteome Association Studies of Breast, Prostate, Ovarian, and Endometrial Cancers Implicate Plasma Protein Regulation in Cancer Susceptibility. | LitMetric

Background: Predicting protein levels from genotypes for proteome-wide association studies (PWAS) may provide insight into the mechanisms underlying cancer susceptibility.

Methods: We performed PWAS of breast, endometrial, ovarian, and prostate cancers and their subtypes in several large European-ancestry discovery consortia (effective sample size: 237,483 cases/317,006 controls) and tested the results for replication in an independent European-ancestry GWAS (31,969 cases/410,350 controls). We performed PWAS using the cancer GWAS summary statistics and two sets of plasma protein prediction models, followed by colocalization analysis.

Results: Using Atherosclerosis Risk in Communities (ARIC) models, we identified 93 protein-cancer associations [false discovery rate (FDR) < 0.05]. We then performed a meta-analysis of the discovery and replication PWAS, resulting in 61 significant protein-cancer associations (FDR < 0.05). Ten of 15 protein-cancer pairs that could be tested using Trans-Omics for Precision Medicine (TOPMed) protein prediction models replicated with the same directions of effect in both cancer GWAS (P < 0.05). To further support our results, we applied Bayesian colocalization analysis and found colocalized SNPs for SERPINA3 protein levels and prostate cancer (posterior probability, PP = 0.65) and SNUPN protein levels and breast cancer (PP = 0.62).

Conclusions: We used PWAS to identify potential biomarkers of hormone-related cancer risk. SNPs in SERPINA3 and SNUPN did not reach genome-wide significance for cancer in the original GWAS, highlighting the power of PWAS for novel locus discovery, with the added advantage of providing directions of protein effect.

Impact: PWAS and colocalization are promising methods to identify potential molecular mechanisms underlying complex traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528410PMC
http://dx.doi.org/10.1158/1055-9965.EPI-23-0309DOI Listing

Publication Analysis

Top Keywords

protein levels
12
association studies
8
plasma protein
8
cancer
8
mechanisms underlying
8
performed pwas
8
cancer gwas
8
protein prediction
8
prediction models
8
protein-cancer associations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!