A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Longitudinal Patterns of Engagement and Clinical Outcomes: Results From a Therapist-Supported Digital Mental Health Intervention. | LitMetric

Longitudinal Patterns of Engagement and Clinical Outcomes: Results From a Therapist-Supported Digital Mental Health Intervention.

Psychosom Med

From Meru Health (Aschbacher, Rivera, Nelson, Forman-Hoffman, Peiper), San Mateo, California; Department of Anthropology (Rivera), Emory University, Atlanta, Georgia; Department of Psychology (Hornstein), Humboldt-Universität zu Berlin, Berlin, Germany; Department of Psychology and Neuroscience (Nelson), University of North Carolina Chapel Hill, Chapel Hill, North Carolina; Department of Epidemiology (Forman-Hoffman), The University of Iowa, Iowa City, Iowa; and Department of Epidemiology and Population Health (Peiper), University of Louisville, Louisville, Kentucky.

Published: September 2023

Objective: Digital mental health interventions (DMHIs) are an effective treatment modality for common mental disorders like depression and anxiety; however, the role of intervention engagement as a longitudinal "dosing" factor is poorly understood in relation to clinical outcomes.

Methods: We studied 4978 participants in a 12-week therapist-supported DMHI (June 2020-December 2021), applying a longitudinal agglomerative hierarchical cluster analysis to the number of days per week of intervention engagement. The proportion of people demonstrating remission in depression and anxiety symptoms during the intervention was calculated for each cluster. Multivariable logistic regression models were fit to examine associations between the engagement clusters and symptom remission, adjusting for demographic and clinical characteristics.

Results: Based on clinical interpretability and stopping rules, four clusters were derived from the hierarchical cluster analysis (in descending order): a) sustained high engagers (45.0%), b) late disengagers (24.1%), c) early disengagers (22.5%), and d) immediate disengagers (8.4%). Bivariate and multivariate analyses supported a dose-response relationship between engagement and depression symptom remission, whereas the pattern was partially evident for anxiety symptom remission. In multivariable logistic regression models, older age groups, male participants, and Asians had increased odds of achieving depression and anxiety symptom remission, whereas higher odds of anxiety symptom remission were observed among gender-expansive individuals.

Conclusions: Segmentation based on the frequency of engagement performs well in discerning timing of intervention disengagement and a dose-response relationship with clinical outcomes. The findings among the demographic subpopulations indicate that therapist-supported DMHIs may be effective in addressing mental health problems among patients who disproportionately experience stigma and structural barriers to care. Machine learning models can enable precision care by delineating how heterogeneous patterns of engagement over time relate to clinical outcomes. This empirical identification may help clinicians personalize and optimize interventions to prevent premature disengagement.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PSY.0000000000001230DOI Listing

Publication Analysis

Top Keywords

symptom remission
20
clinical outcomes
12
mental health
12
depression anxiety
12
anxiety symptom
12
patterns engagement
8
digital mental
8
dmhis effective
8
intervention engagement
8
hierarchical cluster
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!