Background: Thermochemical ablation (TCA) is a minimally invasive therapy under development for hepatocellular carcinoma. TCA simultaneously delivers an acid (acetic acid, AcOH) and base (sodium hydroxide, NaOH) directly into the tumor, where the acid/base chemical reaction produces an exotherm that induces local ablation. However, AcOH and NaOH are not radiopaque, making monitoring TCA delivery difficult.
Purpose: We address the issue of image guidance for TCA by utilizing cesium hydroxide (CsOH) as a novel theranostic component of TCA that is detectable and quantifiable with dual-energy CT (DECT).
Materials And Methods: To quantify the minimum concentration of CsOH that can be positively identified by DECT, the limit of detection (LOD) was established in an elliptical phantom (Multi-Energy CT Quality Assurance Phantom, Kyoto Kagaku, Kyoto, Japan) with two DECT technologies: a dual-source system (SOMATOM Force, Siemens Healthineers, Forchheim, Germany) and a split-filter, single-source system (SOMATOM Edge, Siemens Healthineers). The dual-energy ratio (DER) and LOD of CsOH were determined for each system. Cesium concentration quantification accuracy was evaluated in a gelatin phantom before quantitative mapping was performed in ex vivo models.
Results: On the dual-source system, the DER and LOD were 2.94 and 1.36-mM CsOH, respectively. For the split-filter system, the DER and LOD were 1.41- and 6.11-mM CsOH, respectively. The signal on cesium maps in phantoms tracked linearly with concentration (R = 0.99) on both systems with an RMSE of 2.56 and 6.72 on the dual-source and split-filter system, respectively. In ex vivo models, CsOH was detected following delivery of TCA at all concentrations.
Conclusions: DECT can be used to detect and quantify the concentration of cesium in phantom and ex vivo tissue models. When incorporated in TCA, CsOH performs as a theranostic agent for quantitative DECT image-guidance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770302 | PMC |
http://dx.doi.org/10.1002/mp.16558 | DOI Listing |
Int J Mol Sci
October 2024
Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria.
is a significant opportunistic pathogen highly prevalent in the environment, requiring early detection methods to prevent infections in vulnerable individuals. The most specific aptamer for , F23, has been used for the development of various assays and sensors for early diagnosis and monitoring. In this study, a novel F23-based electrochemical aptasensor was designed using disposal gold screen-printed electrodes (Au-SPEs) with high reproducibility.
View Article and Find Full Text PDFLangmuir
October 2024
Department of Biomedical Engineering, Necmettin Erbakan University, 42090 Konya, Türkiye.
The assessment of phenolic compounds in food samples, environmental samples, and medical applications has gained importance recently. Here, we present research on novel conjugated polymer nanoparticles (P-PimBzBt NPs) and their composites with two-dimensional titanium disulfide nanosheets (2D-TiS) for electrochemical tyrosinase (TYR)-based catechol detection. P-PimBzBt NPs are decorated with 2D-TiS to enhance the electrochemical performance for biosensing.
View Article and Find Full Text PDFAnal Bioanal Chem
December 2024
Chemistry Department, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
Electrophoretic microfluidic paper-based analytical devices (e-µPADs) are promising for low-cost and portable technologies, but quantitative detection remains challenging. In this study, we develop a paper-based isotachophoretic preconcentration and separation method for the herbicide glyphosate as a model analyte. The device, consisting of two electrode chambers filled with leading and terminating electrolytes and a nitrocellulose strip as the separation carrier, was illuminated by a flat light source and operated with a voltage supply of 400 V.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2024
Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, 90050-170, RS, Brazil.
Natural deep eutectic solvents (NADES) are gaining significant attention in analytical chemistry due to attractive physico-chemical properties associated with sustainable aspects. They have been successfully evaluated in different fields, and applications in sample preparation have increased in the last years. However, there is a limited knowledge related to chemical interactions and mechanism of intermolecular action with specific analytes.
View Article and Find Full Text PDFBiosensors (Basel)
August 2024
Hungarian Research Network, Biological Research Centre, Institute of Biophysics, 6726 Szeged, Hungary.
Here, we report a rapid and accurate optical method for detecting cells from liquid samples in a label-free manner. The working principle of the method is based on the interference of parts of a conical laser beam, coming from a single-mode optical fiber directly, and reflected from a flat glass surface. The glass is functionalized by antibodies against the cells to be detected from the liquid sample.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!