The objectives of the current study were to identify polymorphism in the prolactin receptor (PRLR) gene among three Egyptian goat breeds (Zaraibi, Damascus, and Barki) and to investigate the association between PRLR genotype, parity, season of kidding, and litter size factors with milk yield and reproductive traits of Zaraibi goats. One hundred and ninety blood samples were collected for DNA extraction, with 110 from Zaraibi, 40 from Barki, and 40 from Damascus breeds. Three genotypes, CC, CT and TT, for the prolactin receptor gene were identified in the 190 DNA samples using restriction fragment length polymorphism and were confirmed by direct sequencing technique. Milk yield during suckling and lactation periods in addition to age at first conception, gestation length, and litter size were determined in 110 Zaraibi goats. The Zaraibi goats recorded the highest heterozygosity (0.495) and the effective number of alleles (1.972). The g.62130C > T SNP showed a significant association ( < 0.01) with suckling, lactation, and total milk yield of Zaraibi goats with the highest values recorded at the third parity. Age at the first conception and gestation length traits were significantly influenced by the kidding season ( < 0.05) with younger age in autumn and shorter length in spring seasons. Milk yield during the suckling period was significantly ( < 0.01) higher in the case of triplets' litter size. The current study showed that litter size and parity played an important role in the amount of Zaraibi goats' milk yield. The g.62130C > T SNP of the PRLR gene may be a useful marker for assisted selection programs to improve goat milk yield during suckling and lactation periods with the heterozygous genotype CT recording the highest values.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10495398.2023.2223237DOI Listing

Publication Analysis

Top Keywords

prolactin receptor
12
zaraibi goats
12
receptor gene
8
egyptian goat
8
goat breeds
8
litter size
8
milk yield
8
110 zaraibi
8
zaraibi
5
allele mining
4

Similar Publications

Background: Women with endometriosis are more likely to have migraine. The mechanisms underlying this co-morbidity are unknown. Prolactin, a neurohormone secreted and released into circulation from the anterior pituitary, can sensitize sensory neurons from female, but not male, rodents, monkeys and human donors.

View Article and Find Full Text PDF

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.

View Article and Find Full Text PDF

Background: Vulvodynia is a multifactorial disease affecting 7%-16% of reproductive-aged women in general population; however, little is still known about the genetics underlying this complex disease.

Aim: To compare polygenic risk scores for hormones and receptors levels in a case-control study to investigate their role in vulvodynia and their correlation with clinical phenotypes.

Methods: Our case-control study included patients with vestibulodynia (VBD) and healthy women.

View Article and Find Full Text PDF

Growth hormone (GH) signaling is essential for heart development. Both GH deficiency and excess raise cardiovascular risk. Human (h) and mouse (m) GH differ structurally and functionally: hGH binds both the GH receptor (GHR) and prolactin receptor (PRLR), whereas mGH binds only GHR; thus, there is the potential for differential effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!