The experiment investigated the impacts of FA on the proliferation of bovine mammary gland epithelial cells (BMECs) and to investigate the underlying mechanisms. Supplementation of 10 µM FA elevated the mRNA expression of proliferating cell nuclear antigen (PCNA), cyclin A2 and cyclin D1, and protein expression of PCNA and Cyclin A1. The mRNA and protein expression of B-cell lymphoma-2 () and the to BCL2 associated X 4 () ratio elevated, while that of , Caspase-3 and Caspase-9 reduced by FA. Both Akt and mTOR signaling pathways were activated by FA. Moreover, the stimulation of BMECs proliferation, the alteration of proliferative genes and protein expression, the change of apoptotic genes and protein expression, and the activation of mTOR signaling pathway caused by FA were obstructed by Akt inhibitor. Suppression of mTOR with Rapamycin reversed the FA-modulated promotion of BMECs proliferation and change of proliferous genes and protein expression, with no impact on mRNA or proteins expression related to apoptosis and FA-activated Akt signaling pathway. Supplementation of rumen-protected FA in cow diets evaluated milk yields and serum insulin-like growth factor-1 and estradiol levels. The results implied that the proliferation of BMECs was stimulated by FA through the Akt-mTOR signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10495398.2023.2228842 | DOI Listing |
Cell Rep
January 2025
Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:
Chromatin regulatory proteins are expressed broadly and assumed to exert the same intrinsic function across cell types. Here, we report that 14 chromatin regulators undergo evolutionary-conserved neuron-specific splicing events involving microexons. Among them are two components of a histone demethylase complex: LSD1 H3K4 demethylase and the H3K4me0-reader PHF21A.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, P.R. China. Electronic address:
Menin is a scaffold protein encoded by the Men1 gene, and it interacts with a variety of chromatin regulators to activate or repress cellular processes. The potential importance of menin in immune regulation remains unclear. Here, we report that myeloid deletion of Men1 results in the development of spontaneous pulmonary alveolar proteinosis (PAP).
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
Here we characterize seven Cx30.3 gene variants (R22H, S26Y, P61R, C86S, E99K, T130M and M190L) clinically associated with the rare skin disorder erythrokeratodermia variabilis et progressiva (EKVP) in tissue-relevant and differentiation-competent rat epidermal keratinocytes (REKs). We found that all variants, when expressed alone or together with wildtype (WT) Cx30.
View Article and Find Full Text PDFBlood Coagul Fibrinolysis
December 2024
Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, China.
Background: Congenital factor VII (FVII) deficiency is a genetic disorder characterized by decreased FVII activity, which sometimes leads to fatal bleeding. Numerous variants have been found in FVII deficiency, but mutations vary among patients. Each mutation deserves further exploration for each patient at risk of bleeding.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!