Phosphorus (Pi) starvation prevents a good match between light energy absorption and photosynthetic carbon metabolism, generating photo-reactive oxygen species (photo-ROS) in chloroplasts. Plants have evolved to withstand photo-oxidative stress, but the key regulatory mechanism underlying it remains unclear. In rice (Oryza sativa), DEEP GREEN PANICLE1 (DGP1) is robustly up-regulated in response to Pi deficiency. DGP1 decreases the DNA-binding capacities of the transcriptional activators GLK1/2 on the photosynthetic genes involved in chlorophyll biosynthesis, light harvesting, and electron transport. This Pi-starvation-induced mechanism dampens both electron transport rates through photosystem I and II (ETRI and ETRII) and thus mitigates the electron-excessive stress in mesophyll cells. Meanwhile, DGP1 hijacks glycolytic enzymes GAPC1/2/3, redirecting glucose metabolism toward the pentose phosphate pathway with superfluous NADPH production. Phenotypically, light irradiation induces O production in Pi-starved WT leaves but is observably accelerated in dgp1 mutant and impaired in GAPCs and glk1glk2 lines. Interestingly, overexpressed DGP1 in rice caused hyposensitivity to ROS-inducers (catechin and methyl viologen), but the dgp1 mutant shows a similar inhibitory phenotype with the WT seedlings. Overall, the DGP1 gene serves as a specific antagonizer against photo-ROS in Pi-starved rice plants, which coordinates light-absorbing and anti-oxidative systems by orchestrating transcriptional and metabolic regulations, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adbi.202300106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!