and Prevent NAFLD by Regulating FXR Expression and Gut Microbiota.

J Clin Transl Hepatol

Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.

Published: August 2023

Background And Aims: Non-alcoholic fatty liver disease (NAFLD) is closely associated with gut microbiota and has become the most common chronic liver disease worldwide, but the relationship between specific strains and NAFLD has not been fully elucidated. We aimed to investigate whether and could prevent NAFLD, the effects of their action alone or in combination, possible mechanisms, and modulation of the gut microbiota.

Methods: Mice were fed with high-fat diets (HFD) for 20 weeks, in which experimental groups were pretreated with quadruple antibiotics and then given the corresponding bacterial solution or PBS. The expression of the glycolipid metabolism indicators, liver, and intestinal farnesol X receptors (FXR), and intestinal mucosal tight junction proteins were detected. We also analyzed the alterations of inflammatory and immune status and the gut microbiota of mice.

Results: Both strains were able to attenuate mass gain (<0.001), insulin resistance (<0.001), and liver lipid deposition (<0.001). They also reduced the levels of the pro-inflammatory factors (<0.05) and the proportion of Th17 (<0.001), while elevating the proportion of Treg (<0.01). Both strains activated hepatic FXR while suppressing intestinal FXR (<0.05), and elevating tight junction protein expression (<0.05). We also perceived changes in the gut microbiota and found both strains were able to synergize beneficial microbiota to function.

Conclusions: Administration of or alone or in combination was protective against HFD-induced NAFLD formation and could be used as alternative treatment strategy for NAFLD after further exploration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318293PMC
http://dx.doi.org/10.14218/JCTH.2022.00415DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
prevent nafld
8
liver disease
8
nafld regulating
4
regulating fxr
4
fxr expression
4
gut
4
expression gut
4
microbiota background
4
background aims
4

Similar Publications

To understand the action mechanism of probiotics against postmenopausal symptoms, we examined the effects of Lactococcus lactis P32 (P) and Bifidobacterium bifidum P45 (P), which suppressed interleukin (IL)-6 and receptor activator of nuclear factor-κB (RANK) ligand (RNAKL) expression in Gardnerella vaginalis (Gv)-stimulated macrophages, on vaginitis, osteoporosis, and depression/cognitive impairment (DC) in mice with vaginally infected Gv, ovariectomy (Ov), or Ov/Gv (oG). Oral administration of P or P decreased Gv-induced DC-like behavior and tumor necrosis factor (TNF)-α, IL-6, RANK, and/or RANKL expression in the vagina, bone, hypothalamus, hippocampus, and colon, while Gv-suppressed bone osteoprotegerin and brain serotonin and brain-derived neurotrophic factor (BDNF) levels increased. They partially shifted vaginal and gut dysbiosis in Gv-infected mice to the gut microbiota composition in normal control mice.

View Article and Find Full Text PDF

Triphala is a traditional Ayurvedic herbal formulation composed of three fruits: amla (Phyllanthus emblica), bibhitaki (Terminalia bellerica), and haritaki (Terminalia chebula). Triphala is a potent Ayurvedic remedy that promotes digestion, detoxification, and overall wellness, while also providing antioxidant benefits through its trio of nutrient-rich fruits. In order to elucidate the individual contributions of the three ingredients of Triphala from molecular perspective, the individual ingredients were used for the untargeted LCMS/MS analysis.

View Article and Find Full Text PDF

Medium- and long-chain triacylglycerols (MLCTs) are regarded as healthy premium oils; however, the health benefits of novel MLCTs enriched with lauric and α-linolenic acids are still not fully understood. This study examined the health benefits of lauric-α-linolenic structural lipids (ALSL) and physical mixture (PM) with a similar fatty acid composition in mice with obesity induced by the high-fat diet (HFD). The data indicated that ALSL is more effective than PM in counteracting obesity, insulin resistance, hyperlipidaemia, liver injury, and systemic inflammation in HFD-induced mice.

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!