A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diversification processes in Gerp's mouse lemur demonstrate the importance of rivers and altitude as biogeographic barriers in Madagascar's humid rainforests. | LitMetric

Madagascar exhibits exceptionally high levels of biodiversity and endemism. Models to explain the diversification and distribution of species in Madagascar stress the importance of historical variability in climate conditions which may have led to the formation of geographic barriers by changing water and habitat availability. The relative importance of these models for the diversification of the various forest-adapted taxa of Madagascar has yet to be understood. Here, we reconstructed the phylogeographic history of Gerp's mouse lemur () to identify relevant mechanisms and drivers of diversification in Madagascar's humid rainforests. We used restriction site associated DNA (RAD) markers and applied population genomic and coalescent-based techniques to estimate genetic diversity, population structure, gene flow and divergence times among populations and its two sister species and . Genomic results were complemented with ecological niche models to better understand the relative barrier function of rivers and altitude. We show that diversified during the late Pleistocene. The inferred ecological niche, patterns of gene flow and genetic differentiation in suggest that the potential for rivers to act as biogeographic barriers depended on both size and elevation of headwaters. Populations on opposite sides of the largest river in the area with headwaters that extend far into the highlands show particularly high genetic differentiation, whereas rivers with lower elevation headwaters have weaker barrier functions, indicated by higher migration rates and admixture. We conclude that likely diversified through repeated cycles of dispersal punctuated by isolation to refugia as a result of paleoclimatic fluctuations during the Pleistocene. We argue that this diversification scenario serves as a model of diversification for other rainforest taxa that are similarly limited by geographic factors. In addition, we highlight conservation implications for this critically endangered species, which faces extreme habitat loss and fragmentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318617PMC
http://dx.doi.org/10.1002/ece3.10254DOI Listing

Publication Analysis

Top Keywords

gerp's mouse
8
mouse lemur
8
rivers altitude
8
biogeographic barriers
8
madagascar's humid
8
humid rainforests
8
gene flow
8
ecological niche
8
genetic differentiation
8
elevation headwaters
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!