Heparin interferes with the uptake of liposomes in glioma.

Int J Pharm X

Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.

Published: December 2023

In glioblastoma, a malignant primary brain tumor, liposomes have shown promise in pre-clinical and early phase clinical trials as delivery vehicles for therapeutics. However, external factors influencing cellular uptake of liposomes in glioma cells are poorly understood. Heparin and heparin analogues are commonly used in glioma patients to decrease the risk of thrombo-embolic events. Our results show that heparin inhibits pegylated liposome uptake by U87 glioma and GL261 cells in a dose dependent manner and that heparin-mediated inhibition of uptake required presence of fetal bovine serum in the media. In a subcutaneous model of glioma Cy5.5 labeled liposomes could be detected with imaging after direct intra-tumoral injection. analysis with flow cytometry showed a decreased uptake of liposomes into tumor cells in mice treated systemically with heparin compared to those treated with vehicle only.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319201PMC
http://dx.doi.org/10.1016/j.ijpx.2023.100191DOI Listing

Publication Analysis

Top Keywords

uptake liposomes
12
liposomes glioma
8
heparin
5
uptake
5
liposomes
5
glioma
5
heparin interferes
4
interferes uptake
4
glioma glioblastoma
4
glioblastoma malignant
4

Similar Publications

Our previous study revealed that lipid flip-flop inducing phytochemicals from Gymnema sylvestre increase membrane permeability of antimicrobials in S. aureus. However, their lipid flipping and membrane permeabilizing effect on methicillin resistant S.

View Article and Find Full Text PDF

Radiopaque hydrogel-in-liposomes towards theranostic applications for malignant tumors.

Biomed Pharmacother

January 2025

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

A radiopaque hydrogel-in-liposome (RHL) system was developed for micro-computed tomography (μCT) imaging of tumor tissue and simultaneous delivery of a cytotoxic agent. Iopamidol (IPD) and doxorubicin (DOX) were incorporated as the CT contrast and anti-cancer agents, respectively. The presence of a polyethylene glycol hydrogel core in the liposomes was confirmed via attenuated total reflectance Fourier transform infrared, proton nuclear magnetic resonance, and selective solvent extraction.

View Article and Find Full Text PDF

Introduction: FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses).

Methods: FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells.

View Article and Find Full Text PDF

While liposomes enhance the safety and pharmacokinetic profile of free drugs, they have not significantly improved therapeutic efficacy. To overcome this challenge, targeted depletion of tumor-associated macrophages (TAMs) shows significant potential as an effective antitumor therapy, reducing off-target effects in comparison to non-targeted liposomes. In the context of peptide-mediated targeted cancer therapy, we evaluated the reprogramming activity of IFN-γ liposomes on TAMs, as well as that of IFN-γ liposomes modified with an M2 macrophage-targeting peptide, which binds preferentially to murine anti-inflammatory M2 macrophages/M2-like TAMs.

View Article and Find Full Text PDF

A VZV-gE subunit vaccine decorated with mPLA elicits protective cellular immmune responses against varicella-zoster virus.

Int Immunopharmacol

January 2025

Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China. Electronic address:

Herpes zoster is an acute infectious skin disease caused by the reactivation of latent varicella-zoster virus, vaccination, such as subunit vaccine with good safety, can effectively prevent shingles through increasing immunity of the body. However, protein antigens are prone to degradation and inactivation, which alone is generally not sufficient to induce potent immune effect. In this study, the liposomal vaccine platform modified with mPLA (TLR4 agonist) was developed to improve the immunogenicity of glycoprotein E (VZV-gE) derived from herpes zoster virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!