Introduction: Like its counterpart to the south, Canada ranks among the top five countries with the highest rates of opioid prescriptions. With many suffering from opioid use disorder first having encountered opioids prescription routes, practitioners and health systems have an enduring need to identify and effectively respond to the problematic use of opioid prescription. There are strong challenges to successfully addressing this need: importantly, the patterns of prescription fulfillment that signal opioid abuse can be subtle and difficult to recognize, and overzealous enforcement can deprive those with legitimate pain management needs the appropriate care. Moreover, injudicious responses risk shifting those suffering from early-stage abuse of prescribed opioids to illicitly sourced street alternatives, whose varying dosage, availability, and the risk of adulteration can pose grave health risks.
Methods: This study employs a dynamic modeling and simulation to evaluate the effectiveness of prescription regimes employing machine learning monitoring programs to identify the patients who are at risk of opioid abuse while being treated with prescribed opioids. To this end, an agent-based model was developed and implemented to examine the effect of reduced prescribing and prescription drug monitoring programs on overdose and escalation to street opioids among patients, and on the legitimacy of fulfillments of opioid prescriptions over a 5-year time horizon. A study released by the Canadian Institute for Health Information was used to estimate the parameter values and assist in the validation of the existing agent-based model.
Results And Discussion: The model estimates that lowering the prescription doses exerted the most favorable impact on the outcomes of interest over 5 years with a minimum burden on patients with a legitimate need for pharmaceutical opioids. The accurate conclusion about the impact of public health interventions requires a comprehensive set of outcomes to test their multi-dimensional effects, as utilized in this research. Finally, combining machine learning and agent-based modeling can provide significant advantages, particularly when using the latter to gain insights into the long-term effects and dynamic circumstances of the former.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318360 | PMC |
http://dx.doi.org/10.3389/fdgth.2023.1174845 | DOI Listing |
iScience
January 2025
Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China.
Bacteriophages (phages) are increasingly viewed as a promising alternative for the treatment of antibiotic-resistant bacterial infections. However, the diversity of host ranges complicates the identification of target phages. Existing computational tools often fail to accurately identify phages across different bacterial species.
View Article and Find Full Text PDFOver the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.
View Article and Find Full Text PDFFront Artif Intell
January 2025
Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, Bisha, Saudi Arabia.
Cardiac disease refers to diseases that affect the heart such as coronary artery diseases, arrhythmia and heart defects and is amongst the most difficult health conditions known to humanity. According to the WHO, heart disease is the foremost cause of mortality worldwide, causing an estimated 17.8 million deaths every year it consumes a significant amount of time as well as effort to figure out what is causing this, especially for medical specialists and doctors.
View Article and Find Full Text PDFInt J Chron Obstruct Pulmon Dis
January 2025
Department of Cardiology, Respiratory Medicine and Intensive Care, University Hospital Augsburg, Augsburg, Germany.
Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.
Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.
Chem Sci
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!