Previously established immune-responsive co-culture models with macrophages have limitations due to the dedifferentiation of macrophages in long-term cultures. This study is the first report of a long-term (21-day) triple co-culture of THP-1 macrophages (THP-1m) with Caco-2 intestinal epithelial cells and HT-29-methotrexate (MTX) goblet cells. We demonstrated that high-density seeded THP-1 cells treated with 100 ng/mL phorbol 12-myristate 13-acetate for 48 h differentiated stably and could be cultured for up to 21 days. THP-1m were identified by their adherent morphology and lysosome expansion. In the triple co-culture immune-responsive model, cytokine secretions during lipopolysaccharide-induced inflammation were confirmed. Tumor necrosis factor-alpha and interleukin 6 levels were elevated in the inflamed state, reaching 824.7 ± 130.0 pg/mL and 609.7 ± 139.5 pg/mL, respectively. Intestinal membrane integrity was maintained with a transepithelial electrical resistance value of 336.4 ± 18.0 Ω·cm. Overall, our findings suggest that THP-1m can be effectively employed in models of long-term immune responses in both normal and chronic inflammatory states of the intestinal epithelium, making them a valuable tool for future research on the association between the immune system and gut health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217152PMC
http://dx.doi.org/10.3390/cells12101427DOI Listing

Publication Analysis

Top Keywords

triple co-culture
8
optimizing thp-1
4
thp-1 macrophage
4
macrophage culture
4
culture immune-responsive
4
immune-responsive human
4
intestinal
4
human intestinal
4
intestinal model
4
model established
4

Similar Publications

Background: Breast cancer is a leading cause of cancer-related mortality among women globally, with triple-negative breast cancer (TNBC) being particularly aggressive. Delphinidin (Dp), an anthocyanin monomer, has shown promising health benefits.

Objective: This study investigates the effects of Dp on TNBC and aims to elucidate its specific mechanisms of action.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield.

View Article and Find Full Text PDF

Microenvironmental G protein-coupled estrogen receptor-mediated glutamine metabolic coupling between cancer-associated fibroblasts and triple-negative breast cancer cells governs tumour progression.

Clin Transl Med

December 2024

Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, JXHC Key Laboratory of Tumor Microenvironment and Immunoregulation, Jiangxi Key Laboratory of Tumour Metastasis of Jiangxi Health Commission, Nanchang, China.

Background: Triple-negative breast cancer (TNBC) is a particularly aggressive type of breast cancer, known for its lack of effective treatments and unfavorable prognosis. The G protein-coupled estrogen receptor (GPER), a novel estrogen receptor, is linked to increased malignancy in various cancers. However, its involvement in the metabolic regulation of cancer-associated fibroblasts (CAFs), a key component in the tumour microenvironment, remains largely unexplored.

View Article and Find Full Text PDF

Triple-negative breast cancers (TNBCs) typically have a greater immune cell infiltrate and are more likely to respond to immune checkpoint inhibition (ICI) than ER+ or HER2+ breast cancers. However, there is a crucial need to optimize combining chemotherapy strategies with ICI to enhance overall survival in TNBC. Therefore, we developed a high-throughput co-culture screening assay to identify compounds that enhance CD8+ T-cell-mediated tumor cell cytotoxicity.

View Article and Find Full Text PDF

Convergence of plant sterols and host eukaryotic cell-derived defensive lipids at the infectious pathogen-host interface.

Biochimie

December 2024

Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103, Kiel, Germany.

Plant sterols (PSs) exhibit intrinsic functions such as antibacterial effects. Their effects simultaneously on both host-mediated and bacteria-mediated pathogenesis are not yet fully understood. We hypothesized that when absorptive cells, defensive cells and detoxer cells are cultured together, their convergent response to an infectious pathogen depends on the molecular mimicry between the ingested sterols and their own defensive lipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!