Background: Despite recent reductions in Vietnam, malaria transmission persists in some areas in forests and farmlands where a high density of Anopheles mosquitoes relative to other environments occurs. To inform effective malaria control measures, it is important to understand vector bionomics and the malaria transmission role of Anopheles spp. in the highland regions of Vietnam. This study was conducted to quantify the abundance, composition and biting behaviour of the Anopheles mosquito population, and the proportion of Plasmodium spp. infected mosquitoes collected from forest and agricultural farm sites in Gia Lai province, Vietnam.
Methods: Forest and agricultural farm sites in Gia Lai province were selected for mosquito collections (total eight sites). Mosquito collection was performed by Human-baited Double Net Trap (HDNT), animal-baited traps (ABT) using cattle, and CDC light traps. Captured mosquitoes were identified morphologically, and salivary glands of Anopheles mosquitoes were examined for sporozoites using microscopy. Plasmodium infection was determined by Polymerase Chain Reaction (PCR), and identification of blood meal type was determined by PCR and diffuse serum agglutination assay.
Results: A total of 1815 Anopheles mosquitoes belonging to 19 species were collected by ABT (n = 1169), HDNT (n = 471) and CDC light trap (n = 175). Anopheles abundance and diversity varied by district and environment. Capture by HDNT of Anopheles of vectorial concern was observed between early evening and early morning. Plasmodium vivax infection was determined by PCR in two Anopheles dirus specimens captured by HDNT in forest sites. Blood from a range of hosts could, including human blood, could be detected in species considered primary and secondary vectors An. dirus, and Anopheles aconitus, and Anopheles maculatus, respectively.
Conclusions: A low number of Anopheles spp. considered primary vectors of concern and very low numbers of Plasmodium spp. infected Anopheles mosquitoes were captured at the end of the rainy season in the Central Highlands of Vietnam. However, capture species of vectorial concern by HDNT throughout the early to late evening demonstrates that use of additional personal protective measures could supplement current preventative measures, such as bed nets to prevent exposure to vectors of concern in this region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320868 | PMC |
http://dx.doi.org/10.1186/s12936-023-04631-1 | DOI Listing |
PLOS Glob Public Health
December 2024
Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
Knowing when and where infected mosquitoes bite is required for estimating accurate measures of malaria risk, assessing outdoor exposure, and designing intervention strategies. This study combines secondary analyses of a human behaviour survey and an entomological survey carried out in the same area to estimate human exposure to malaria-infected Anopheles mosquitoes throughout the night in rural villages in south-eastern Tanzania. Mosquitoes were collected hourly from 6PM to 6AM indoors and outdoors by human landing catches in 2019, and tested for Plasmodium falciparum sporozoite infections using ELISA.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Cell Biology, University of Bern, Bern, Switzerland.
Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.
View Article and Find Full Text PDFSci Rep
December 2024
Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon.
Insecticide resistance escalation is decreasing the efficacy of vector control tools. Monitoring vector resistance is paramount in order to understand its evolution and devise effective counter-solutions. In this study, we monitored insecticide resistance patterns, vector population bionomics and genetic variants associated with resistance over 3 years from 2021 to 2023 in Uganda.
View Article and Find Full Text PDFParasit Vectors
December 2024
Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Morogoro, Tanzania.
Background: The Anopheles funestus group includes at least 11 sibling species, with Anopheles funestus Giles being the most studied and significant malaria vector. Other species, like Anopheles parensis, are understudied despite their potential role in transmission. This article provides insights into the biology and insecticide susceptibility of An.
View Article and Find Full Text PDFSci Rep
December 2024
College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
Vector-borne diseases pose a major worldwide health concern, impacting more than 1 billion people globally. Among various blood-feeding arthropods, mosquitoes stand out as the primary carriers of diseases significant in both medical and veterinary fields. Hence, comprehending their distinct role fulfilled by different mosquito types is crucial for efficiently addressing and enhancing control measures against mosquito-transmitted diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!