Background: Intestinal barrier dysfunction plays a central role in the pathological onset of Crohn's disease. We identify the cadherin superfamily member protocadherin 20 (PCDH20) as a crucial factor in Crohn's disease. Here we describe the function of PCDH20 and its mechanisms in gut homeostasis, barrier integrity, and Crohn's disease development.
Results: PCDH20 mRNA and protein expression is significantly downregulated in the colonic epithelium of Crohn's disease patients and mice with induced colitis compared with controls. In mice, intestinal-specific Pcdh20 knockout causes defects in enterocyte proliferation and differentiation, while causing morphological abnormalities. Specifically, the deletion disrupts barrier integrity by unzipping adherens junctions via β-catenin regulation and p120-catenin phosphorylation, thus aggravating colitis in DSS- and TNBS-induced colitis mouse models. Furthermore, we identify activating transcription factor 6 (ATF6), a key chaperone of endoplasmic reticulum stress, as a functional downstream effector of PCDH20. By administering a selective ATF6 activator, the impairment of intestinal barrier integrity and dysregulation of CHOP/β-catenin/p-p120-catenin pathway was reversed in Pcdh20-ablated mice with colitis and PCDH20-deficient colonic cell lines.
Conclusions: PCDH20 is an essential factor in maintaining intestinal epithelial homeostasis and barrier integrity. Specifically, PCDH20 helps to protect against colitis by tightening adherens junctions through the ATF6/CHOP/β-catenin/p-p120-catenin axis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320870 | PMC |
http://dx.doi.org/10.1186/s13059-023-02991-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!