Photodynamic therapy (PDT) has garnered increasing attention in cancer treatment because of its advantages such as minimal invasiveness and selective destruction. With the development of PDT, impressive progress has been made in the preparation of photosensitizers, particularly porphyrin photosensitizers. However, the limited tissue penetration of the activating light wavelengths and relatively low light energy capture efficiency of porphyrin photosensitizers are two major disadvantages in conventional photosensitizers. Therefore, tissue penetration needs to be enhanced and the light energy capture efficiency of porphyrin photosensitizers improved through structural modifications. The indirect excitation of porphyrin photosensitizers using fluorescent donors (fluorescence resonance energy transfer) has been successfully used to address these issues. In this review, the enhancement of the light energy capture efficiency of porphyrins is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11864-023-01120-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!