Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Citrus species among the most important and widely consumed fruit in the world due to Vitamin C, essential oil glands, and flavonoids. Highly variable simple sequence repeats (SSR) markers are one of the most informative and versatile molecular markers used in perennial tree genetic research. SSR survey of Citrus sinensis and Citrus maxima were identified perfect SSRs spanning nine chromosomes. Furthermore, we categorized all SSR motifs into three major classes based on their tract lengths. We designed and validated a class I SSRs in the C. sinensis and C. maxima genome through electronic polymerase chain reaction (ePCR) and found 83.89% in C. sinensis and 78.52% in C. maxima SSRs producing a single amplicon. Then, we selected extremely variable SSRs (> 40 nt) from the ePCR-verified class I SSRs and in silico validated across seven draft genomes of citrus, which provided us a subset of 84.74% in C. sinensis and 77.53% in C. maxima highly polymorphic SSRs. Out of these, 129 primers were validated on 24 citrus genotypes through wet-lab experiment. We found 127 (98.45%) polymorphic HvSSRs on 24 genotypes. The utility of the developed HvSSRs was demonstrated by analysing genetic diversity of 181 citrus genotypes using 17 HvSSRs spanning nine citrus chromosomes and were divided into 11 main groups through 17 HvSSRs. These chromosome-specific SSRs will serve as a powerful genomic tool used for future QTL mapping, molecular breeding, investigation of population genetic diversity, comparative mapping, and evolutionary studies among citrus and other relative genera/species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322976 | PMC |
http://dx.doi.org/10.1038/s41598-023-37024-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!