A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds. | LitMetric

Rapid, high-fidelity single-shot readout of quantum states is a ubiquitous requirement in quantum information technologies. For emitters with a spin-preserving optical transition, spin readout can be achieved by driving the transition with a laser and detecting the emitted photons. The speed and fidelity of this approach is typically limited by low photon collection rates and measurement back-action. Here we use an open microcavity to enhance the optical readout signal from a semiconductor quantum dot spin state, largely overcoming these limitations. We achieve single-shot readout of an electron spin in only 3 nanoseconds with a fidelity of (95.2 ± 0.7)%, and observe quantum jumps using repeated single-shot measurements. Owing to the speed of our readout, errors resulting from measurement-induced back-action have minimal impact. Our work reduces the spin readout-time well below both the achievable spin relaxation and dephasing times in semiconductor quantum dots, opening up new possibilities for their use in quantum technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322905PMC
http://dx.doi.org/10.1038/s41467-023-39568-1DOI Listing

Publication Analysis

Top Keywords

single-shot readout
12
readout quantum
8
quantum dot
8
dot spin
8
spin nanoseconds
8
quantum technologies
8
semiconductor quantum
8
quantum
7
readout
6
spin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!