The biotypic and genotypic features of Pasteurella canis isolated from dogs, cats, and humans were clarified by repetitive sequence-based fingerprinting and nucleotide sequences encoding trehalose-6-phosphate hydrolase (treC). Thirty P. canis and 48 P. multocida isolates were collected from dogs, cats, and humans to perform biotyping. The genotyping of P. canis by fingerprinting was followed by dendrogram construction. The whole-genome sequences (WGSs) were searched for the enzyme-coding nucleotide sequences around the main and adjacent loci constituting the operon. Full-length nucleotide sequences encoding the enzyme were determined using polymerase chain reaction and direct sequencing. Biotypic results were compared to the dendrogram and nucleotide sequence data. We observed a difference in trehalose fermentation with a positivity rate of 46.7%. Two (A-1/A-2) and three (B-1/B-2/B-3) clades were located on the dendrograms generated based on two repetitive sequence-based fingerprinting techniques, showing no association between trehalose fermentation and the clades. Based on the WGSs, two variants of the gene, namely, a 1,641 bp gene treC and a pseudogene (1,335 bp) of treC with its first 306 nucleotides deleted, were observed. Trehalose-positive isolates harbored treC, whereas trehalose-negative isolates lacked treC with or without the pseudogene. Our observations suggest biotypic and genotypic diversity among the P. canis isolates from animal and human hosts, with respect to trehalose fermentation and treC nucleotide sequences. This is the first report on the diversity of treC nucleotide sequences among these isolates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466065 | PMC |
http://dx.doi.org/10.1292/jvms.23-0165 | DOI Listing |
Cell Biol Toxicol
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.
NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Physics, 845 W Taylor St, University of Illinois Chicago, Chicago, IL 60607, USA.
Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Shizishan Road No.1, Hongshan District, 430070 Wuhan, China.
Primase-polymerases (PrimPols) play divergent functions from DNA replication to DNA repair in all three life domains. In archaea and bacteria, numerous and diverse PPs are encoded by mobile genetic elements (MGEs) and act as the replicases for their MGEs. However, their varying activities and functions are not fully understood.
View Article and Find Full Text PDFDatabase (Oxford)
January 2025
School of Computer Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an, Shaanxi 710126, China.
The pathogenesis of complex diseases is intricately linked to various genes and network medicine has enhanced understanding of diseases. However, most network-based approaches ignore interactions mediated by noncoding RNAs (ncRNAs) and most databases only focus on the association between genes and diseases. Based on the mentioned questions, we have developed DisGeNet, a database focuses not only on the disease-associated genes but also on the interactions among genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!