Hypertrophic cardiomyopathy (HCM) is frequently caused by pathogenic variants in genes encoding sarcomere proteins and is characterized by left ventricular (LV) hypertrophy, hypercontractility, and-in many cases-left ventricular outflow tract (LVOT) obstruction. Despite standard management, obstructive HCM (oHCM) can still cause substantial morbidity, highlighting the critical need for more effective disease-specific therapeutic approaches. Over the past decade, improved understanding of the molecular pathobiology of HCM has culminated in development of cardiac myosin inhibitors (CMIs), a novel drug class that in recent randomized clinical trials has been shown to decrease LVOT obstruction, improve exercise capacity, and ameliorate symptom burden in patients with oHCM. Although promising, areas of uncertainty remain, including the long-term safety and efficacy of CMIs and whether they have the potential to modify progression of disease. Herein, we review key milestones in the clinical development of CMIs, contextualize CMIs with established oHCM therapies, and discuss future challenges and opportunities for the use of CMIs across the HCM spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchf.2023.04.018 | DOI Listing |
Int J Mol Sci
January 2025
PhysioLab, University of Florence, 50019 Sesto Fiorentino, Italy.
In maximally Ca-activated demembranated fibres from the mammalian skeletal muscle, the depression of the force by lowering the temperature below the physiological level (~35 °C) is explained by the reduction of force in the myosin motor. Instead, cooling is reported to not affect the force per motor in Ca-activated cardiac trabeculae from the rat ventricle. Here, the mechanism of the cardiac performance depression by cooling is reinvestigated with fast sarcomere-level mechanics.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, 35128 Padova, Italy.
Since its first pathological description over 65 years ago, hypertrophic cardiomyopathy (HCM), with a worldwide prevalence of 1:500, has emerged as the most common genetically determined cardiac disease. Diagnostic work-up has dramatically improved over the last decades, from clinical suspicion and abnormal electrocardiographic findings to hemodynamic studies, echocardiography, contrast-enhanced cardiac magnetic resonance, and genetic testing. The implementation of screening programs and the use of implantable cardioverter defibrillators (ICDs) for high-risk individuals have notably reduced arrhythmic sudden deaths, altering the disease's mortality profile.
View Article and Find Full Text PDFAm J Cardiol
January 2025
Department of Cardiovascular Medicine, Baystate Medical Center and Division of Cardiovascular Medicine, University of Massachusetts-Baystate, Springfield, Massachusetts, USA. Electronic address: https://twitter.com/AGoldsweig.
Introduction: Obstructive hypertrophic cardiomyopathy (oHCM) is a genetic disorder characterized by myocardial hypertrophy, which can obstruct left ventricular outflow. Cardiac myosin inhibitors (CMIs) have emerged as a novel therapeutic agent targeting cardiac muscle hypercontractility.
Objective: To compare the efficacy and safety of CMIs mavacamten and aficamten vs.
Gene
January 2025
Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, China. Electronic address:
Hyperlipidemia and myocardial apoptosis caused by myocardial ischemia are the main causes of high mortality rates in cardiovascular diseases. Previous studies have indicated that Krüppel-like factor 4 (KLF4) is involved in the induction of cardiac myocyte apoptosis under various stress conditions. In current study, we discovered that KLF4 also participates in palmitic acid (PA)-induced cardiac myocyte apoptosis.
View Article and Find Full Text PDFAutoimmun Rev
January 2025
Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,. Electronic address:
Background: Dilated cardiomyopathy (DCM) is a prevalent myocardial disorder characterized by impaired cardiac function affecting either the left ventricle or both ventricles. Accumulating evidence suggests that autoimmunity represents a key mechanism implicated in its pathogenesis, as several abundant autoantibodies have been identified in patients with the condition. However, the prevalence of these antibodies (Abs) in patients with DCM compared to that in both healthy controls (HCs) and those with ischemic cardiomyopathy (ICM), as well as their potential association with DCM, remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!