Objectives: Concepts related to SARS-CoV-2 laboratory testing and result interpretation can be challenging to understand. A cross-sectional survey of COVID-19 positive adults residing in Ontario, Canada was conducted to explore how well people understand SARS-CoV-2 laboratory tests and their associated results.

Design And Methods: Participants were recruited through fliers or by prospective recruitment of outpatients and hospitalized inpatients with COVID-19. Enrolled participants included consenting adults with a positive SARS-CoV-2 polymerase chain reaction test result. An 11-item questionnaire was developed by researchers, nurses, and physicians in the study team and was administered online between April 2021 to May 2022 upon enrolment into the study.

Results: Responses were obtained from 940 of 1106 eligible participants (85% participation rate). Most respondents understood 1) that antibody results should not influence adherence to social distancing measures (n = 602/888, 68%), 2) asymptomatic SARS-CoV-2 infection following test positivity (n = 698/888, 79%), 3) serological test sensitivity in relation to post-infection timeline (n = 540/891, 61%), and 4) limitations of experts' knowledge related to SARS-CoV-2 serology (n = 693/887, 78%). Conversely, respondents demonstrated challenges understanding 1) conflicting molecular and serological test results and their relationship with immune protection (n = 162/893, 18%) and 2) the impact of SARS-CoV-2 variants on vaccine effectiveness (n = 235/891, 26%). Analysis of responses stratified by sociodemographic variables identified that respondents who were either: 1) female, 2) more educated, 3) aged 18-44, 4) from a high-income household, or 5) healthcare workers responded expectedly more often.

Conclusions: We have highlighted concepts related to SARS-CoV-2 laboratory tests and associated results which may be challenging to understand. The findings of this study enable us to identify 1) misconceptions related to various SARS-CoV-2 test results, 2) groups of individuals at risk, and 3) strategies to improve people's understanding of their test results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiochem.2023.110607DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 laboratory
12
sars-cov-2
9
knowledge sars-cov-2
8
laboratory testing
8
testing result
8
result interpretation
8
cross-sectional survey
8
concepts sars-cov-2
8
challenging understand
8
laboratory tests
8

Similar Publications

This study compared the dynamics of SARS-CoV-2 viral shedding in saliva between wild-type virus-infected and Omicron-infected household cohorts. Pre-existing immunity in participants likely shortens the viral RNA shedding duration and lowers viral load peaks. Frequent saliva sampling can be a convenient tool to study viral load dynamics.

View Article and Find Full Text PDF

Dogs can discriminate between people infected with SARS-CoV-2 from those uninfected, although their results vary depending on the settings in which they are exposed to infected individuals or samples of urine, sweat or saliva. This variability likely depends on the viral load of infected people, which may be closely associated with physiological changes in infected patients. Determining this viral load is challenging, and a practical approach is to use the cycle threshold (Ct) value of a RT-qPCR test.

View Article and Find Full Text PDF

Protein-Protein Interactions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve.

View Article and Find Full Text PDF

Protocol for evaluating humoral immune responses in mice following SARS-CoV-2 vaccination.

STAR Protoc

January 2025

Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China. Electronic address:

Binding and neutralizing antibodies are critical indicators of protection against viral pathogens and are essential for assessing the immunogenicity and efficacy of a vaccine. Here, we present a protocol comprising two assays for measuring the spike-specific binding and neutralizing antibodies in mouse plasma following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. We describe steps for determining binding antibody titers using enzyme-linked immunosorbent assay (ELISA) and assessing neutralizing antibody titers through a pseudovirus neutralization assay.

View Article and Find Full Text PDF

Thermally Triggered Double Emulsion-Integrated Hydrogel Microparticles for Multiplexed Molecular Diagnostics.

Adv Sci (Weinh)

January 2025

Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.

During the COVID-19 pandemic, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been recognized as the most reliable diagnostic tool. However, there is a need to develop multiplexed assays capable of analyzing multiple genes simultaneously to expand its application. To address this, a multiplexed RT-qPCR using a double emulsion (DE)-based carrier and a polymer microparticle reactor, termed primer-incorporated network tailored with Taqman probe (TaqPIN) is developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!