The Russo-Ukrainian war has highlighted concerns regarding the European Union's (EU) energy security, given its heavy dependence on Russian natural gas for electricity and heating. The RePowerEU initiative addresses this challenge by targeting a significant increase in biomethane production (up to 35 billion m by 2030) to replace natural gas, aligning with the EU methane strategy's emission reduction and air quality improvement goals. However, the use of energy crops as biogas feedstock has raised land-use concerns, necessitating a policy shift towards alternative sources such as agro-residues, livestock manure, and sewage sludge. This study investigates the environmental impacts of using roadside grass clippings (RG) as an alternative feedstock for biogas production, focusing on selected regions in Northwest Europe (Belgium, Netherlands). The aim is to evaluate the environmental performance of RG as a mono- or co-substrate for biogas production, comparing it to the current practice of composting. Additionally, the study assesses the environmental impacts associated with biogas end-use in these regions. The results indicate that co-digestion of RG with pig manure offers a more environmentally friendly alternative compared to mono-digestion of RG or the existing composting practice. This finding is primarily attributed to the avoided emissions resulting from conventional pig manure management. Furthermore, in terms of climate change impacts concerning biogas end-use, the study identifies that combined heat and power (CHP) systems are preferable to biomethane recovery in regions with a natural gas-based electricity mix. However, for reducing fossil resource use, biomethane recovery emerges as the preferred option. By providing insights into the environmental performance of RG as a biogas feedstock and evaluating the impacts of different biogas end-use options, this study offers insights to policymakers for the development of sustainable energy strategies in Northwest Europe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118538 | DOI Listing |
FEMS Microbiol Lett
January 2025
School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia.
Aeration is a common pretreatment method to enhance biogas production via anaerobic digestion of waste organic feedstocks such as unused food. While impacts on downstream anaerobic digestion have been intensively investigated, the consequence of aeration on the microbial community in food waste has not been characterised. Food waste has a low pH resulting from the dominance of lactic acid bacteria within the Firmicutes phylum.
View Article and Find Full Text PDFEnviron Res
January 2025
Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain. Electronic address:
This work explores the synergies between N-rich (Chlorella pyrenoidosa) microalgae and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions.
View Article and Find Full Text PDFHeliyon
January 2025
Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.
Anaerobic digestion represents an opportunity for converting organic waste (OW) into valuable products: renewable energy (biogas) and a fertilizer (digestate). However, the long-term effects of digestates on soil biota, especially microorganisms, need to be better documented to understand the impact of digestate on soil ecosystem functioning and resilience. This study assessed the cumulative effect of repeated pig slurry digestate applications on soil microbial communities over a decade, using an in-situ approach to compare digested feedstock with undigested feedstock and other fertilization treatments.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Biofuel Laboratory, Department of Energy, Tezpur University, Assam, 784028, India.
Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons.
View Article and Find Full Text PDFJ Environ Manage
December 2024
ENGIE Lab Crigen, 93240, Stains, Paris, France. Electronic address:
Bioelectrochemically improved anaerobic digestion (AD-BES) represents an upgrading strategy for existing biogas plants, consisting of the integration of bioelectrodes within the AD reactor. For this study, a series of laboratory-scale AD-BES reactors were operated, valorising agricultural digestates through the production of biogas. The reactors were inoculated and started-up with three different digestates, leading to significant differences in the microbial community developed on the bioelectrodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!