Combinatorial inhibition of Topoisomerase 1 (TOP1) and Poly (ADP-ribose) polymerase 1 (PARP1) is an attractive therapeutic strategy which is under active investigation to address chemoresistance to TOP1 inhibitors. However, this combinatorial regimen suffers from severe dose limiting toxicities. Dual inhibitors often offer significant advantages over combinatorial therapies involving individual agents by minimizing toxicity and providing conducive pharmacokinetic profiles. In this study, we have designed, synthesized and evaluated a library of 11 candidate conjugated dual inhibitors for PARP1 and TOP1, named as DiPT-1 to DiPT-11. Our extensive screening showed that one of the hits i.e.DiPT-4 has promising cytotoxicity profile against multiple cancers with limited toxicities towards normal cells. DiPT-4 induces extensive DNA double stand breaks (DSBs), cell cycle arrest and apoptosis in cancer cells. Mechanistically, DiPT-4 has the propensity to bind catalytic pockets of TOP1 and PARP1, leading to significant inhibition of both TOP1 and PARP1 at in vitro and cellular level. Interestingly, DiPT-4 causes extensive stabilization of TOP1-DNA covalent complex (TOP1cc), a key lethal intermediate associated with induction of DSBs and cell death. Moreover, DiPT-4 inhibited poly (ADP-ribosylation) i.e. PARylation of TOP1cc, leading to long lived TOP1cc with a slower kinetics of degradation. This is one of the important molecular processes which helps in overcoming resistance in cancer in response to TOP1 inhibitors. Together, our investigation showed DiPT-4 as a promising dual inhibitor of TOP1 and PARP1, which may have the potential to offer significant advantages over combinatorial therapy in clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2023.115598DOI Listing

Publication Analysis

Top Keywords

top1 parp1
12
dual inhibitor
8
poly adp-ribose
8
adp-ribose polymerase
8
cancer cells
8
top1 inhibitors
8
dual inhibitors
8
offer advantages
8
advantages combinatorial
8
dsbs cell
8

Similar Publications

PARP1-dependent DNA-protein crosslink repair.

Nat Commun

August 2024

The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.

DNA-protein crosslinks (DPCs) are toxic lesions that inhibit DNA related processes. Post-translational modifications (PTMs), including SUMOylation and ubiquitylation, play a central role in DPC resolution, but whether other PTMs are also involved remains elusive. Here, we identify a DPC repair pathway orchestrated by poly-ADP-ribosylation (PARylation).

View Article and Find Full Text PDF

Real-time imaging of drug-induced trapping of cellular topoisomerases and poly(ADP-ribose) polymerase 1 at the single-molecule level.

Nucleic Acids Res

October 2023

Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Topoisomerases (TOP1, TOP2α, and β) are nuclear enzymes crucial for virtually all aspects of DNA metabolisms. They also are the targets of important anti-tumor chemotherapeutics that act by trapping the otherwise reversible topoisomerase-DNA covalent complex intermediates (TOPccs) that are formed during their catalytic reactions, resulting in long-lived topoisomerase DNA-protein crosslinks (TOP-DPCs) that interfere with DNA transactions. The Poly(ADP-ribose) polymerase (PARP) family protein PARP1 is activated by DNA damage to recruit DNA repair proteins, and PARP inhibitors are another class of commonly used chemotherapeutics, which bind and trap PARP molecules on DNA.

View Article and Find Full Text PDF

Combinatorial inhibition of Topoisomerase 1 (TOP1) and Poly (ADP-ribose) polymerase 1 (PARP1) is an attractive therapeutic strategy which is under active investigation to address chemoresistance to TOP1 inhibitors. However, this combinatorial regimen suffers from severe dose limiting toxicities. Dual inhibitors often offer significant advantages over combinatorial therapies involving individual agents by minimizing toxicity and providing conducive pharmacokinetic profiles.

View Article and Find Full Text PDF

BRCAness, Homologous Recombination Deficiencies, and Synthetic Lethality.

Cancer Res

April 2023

Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.

The concept of "BRCAness" was first described in 2004 to define the situation in which a homologous recombination repair (HRR) defect in a tumor relates to and phenocopies BRCA1 or BRCA2 loss-of-function mutations. Soon after the discovery of synthetic lethality of PARP1/2 inhibitors in BRCA1- or BRCA2-deficient cells, McCabe and colleagues extended the concept of BRCAness to homologous recombination deficiency (HRD) by studying the sensitivity of cancer cells to PARP inhibitors. They genetically revealed that deficiency in HR-related genes (RAD51, RAD54, DSS1, and RPA1), DNA damage signaling genes (ATR, ATM, CHK1, CHK2, and NBS1), or Fanconi anemia-related genes (FANCD2, FANCA, and FANCC) conferred sensitivity to PARP inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • Topoisomerase 1 (TOP1) is crucial for DNA functions like replication and is targeted by anticancer drugs such as topotecan, which can cause cell death by stabilizing the TOP1 cleavage complex.
  • Tyrosyl-DNA phosphodiesterase 1 (TDP1) can remove this complex, thereby reducing the effectiveness of topotecan.
  • A study comparing wild type and PARP1 knockout HEK293A cells revealed that PARP1 deficiency led to significantly more changes in gene expression when treated with topotecan and a TDP1 inhibitor, affecting pathways related to cancer development and DNA repair.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!