Rapid Diagnostic Platform for Personalized Vitamin B6 Detection in Erythrocytes PLP Cofactor Mimics.

ACS Chem Biol

TUM School of Natural Sciences, Department Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technical University Munich (TUM), Ernst-Otto-Fischer Str. 8, Garching 85748, Germany.

Published: July 2023

Personalized assessment of vitamin levels in point-of-care (POC) devices is urgently needed to advance the recognition of diseases associated with malnutrition and unbalanced diets. We here introduce a diagnostic platform, which showcases an easy and rapid readout of vitamin B6 (pyridoxal phosphate, PLP) levels in erythrocytes as a first step toward a home-use POC. The technology is based on fluorescent probes, which bind to PLP-dependent enzymes (PLP-DEs) and thereby indirectly report their occupancy with endogenous B6. For example, low vitamin levels result in high probe binding, yielding a strong signal and . Antibodies against signature human PLP-DEs were immobilized on microarrays to capture probe labeled enzymes for fluorescent detection. Calibrating the system with defined B6 levels revealed a concentration-depended readout as well as sufficient sensitivity for its detection in erythrocytes. To account for individual differences in protein expression, a second antibody was used to normalize protein abundance. This sandwiched assay correctly reported relative B6 levels in human erythrocyte samples, as confirmed by classical laboratory diagnostics. In principle, the platform layout can be easily expanded to other crucial vitamins beyond B6 an analogous probe strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.3c00279DOI Listing

Publication Analysis

Top Keywords

diagnostic platform
8
detection erythrocytes
8
vitamin levels
8
levels
5
rapid diagnostic
4
platform personalized
4
vitamin
4
personalized vitamin
4
vitamin detection
4
erythrocytes plp
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!