-Nitrobenzaldehyde (NBA) is a well-known photoactivated acid and a prototypical photolabile nitro-aromatic compound. Despite extensive investigations, the ultrafast relaxation dynamics of NBA is still not properly understood, especially concerning the role of the triplet states. In this work, we provide an in-depth picture of this dynamics by combining single- and multireference electronic structure methods with potential energy surface exploration and nonadiabatic dynamics simulations using the Surface Hopping including ARbitary Couplings (SHARC) approach. Our results reveal that the initial decay from the bright ππ* state to the S minimum is barrierless. It involves three changes in electronic structure from ππ* (ring) to π* (nitro group), to π* (aldehyde group), and then to another π* (nitro group). The decay of the ππ* takes 60-80 fs and can be tracked with time-resolved luminescence spectroscopy, where we predict for the first time a short-lived coherence of the luminescence energy with a 25 fs period. Intersystem crossing can occur already during the S → S deactivation cascade but also from S, with a time constant of about 2.4 ps and such that first a triplet ππ* state localized on the nitro group is populated. The triplet population first evolves into an π* and then quickly undergoes hydrogen transfer to form a biradical intermediate, from where the ketene is eventually produced. The majority of the excited population decays from S through two conical intersections of equal utilization, a previously unreported one involving a scissoring motion of the nitro group that leads back to the NBA ground state and the one involving hydrogen transfer that leads to the ketene intermediate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364085 | PMC |
http://dx.doi.org/10.1021/acs.jpca.3c02899 | DOI Listing |
Org Lett
January 2025
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China.
In this work, two energetic compounds 5-(3-iminio-6-nitro-3H-[1,2,4]triazolo[4,3-][1,2,4]triazol-2(7)-yl)tetrazol-1-ide () and 3-nitro-7-(2-tetrazol-5-yl)-7-[1,2,4]triazolo[4,3-][1,2,4]triazol-6-amine () were successfully synthesized from the same compound 3,6,7-triamino-7-[1,2,4]triazolo[4,3-][1,2,4]triazolium (). Both compounds contain three explosophores, amino, nitro, and tetrazole, on the fused ring. Through different functional group arrangements, possesses higher density and good thermal stability.
View Article and Find Full Text PDFSci Rep
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
The fishmeal is boon for aquaculture production in this recent pollution and climate change era. However, the demand of fishmeal is enhancing in many folds which needs to find alternative to fishmeal in cheap price. The present investigation addresses these issues with quinoa husk (QH).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China.
The initial decomposition reactions of 1,3,5-trinitrobenzene (TNB), picric acid (PA), 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitroaniline (TNA) and 2,4,6-trinitrophenylmethylnitramine (Tetryl) were studied using ReaxFF-lg molecular dynamics simulations, and the substituent effect on the thermal decomposition behaviours of nitrobenzene compounds was evaluated through the reactant number, initial decomposition pathway, products and cluster analysis. The results show that the introduction of substituents could promote the decomposition of the reactants, increase the frequency of the nitro-nitrito isomerization reaction and intermolecular H or O atom transfer reaction, and reduce the frequency of the direct nitro dissociation reaction. Notably, these effects were most obvious in the case of TNT.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departamento de Química y Biología, Facultad de Ciencias Naturales, Universidad de Atacama, Av. Copayapu 485, Copiapó 1530000, Chile.
Fukui functions are related to electron densities, and their interpretation permits the determination of reactivity of atomic centres. However, negative values cannot be interpreted by an "electron density based" model and represent a phenomenon that has been little investigated and understood. Previous works in the literature suggest that they are related to nodes in the wave function.
View Article and Find Full Text PDFMolecules
December 2024
College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China.
-Butyl hypochlorite was employed as a versatile reagent for chlorooxidation of indoles, chlorination of 2-oxindoles, and decarboxylative chlorination of the indole-2-carboxylic acids. Four types of products including 2-chloro-3-oxindoles, 2,2-dichloro-3-oxindoles, 3,3-dichloro-2-oxindoles, and 2,3-dichloroindoles could be selectively obtained in moderate to excellent yields by switching the substrates. Various synthetically useful functional groups, such as halogen atoms, cyano, nitro, and methoxycarbonyl groups, remain intact during the reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!