Background: The number of people with cognitive deficits and diseases, such as stroke, dementia, or attention-deficit/hyperactivity disorder, is rising due to an aging, or in the case of attention-deficit/hyperactivity disorder, a growing population. Neurofeedback training using brain-computer interfaces is emerging as a means of easy-to-use and noninvasive cognitive training and rehabilitation. A novel application of neurofeedback training using a P300-based brain-computer interface has previously shown potential to improve attention in healthy adults.

Objective: This study aims to accelerate attention training using iterative learning control to optimize the task difficulty in an adaptive P300 speller task. Furthermore, we hope to replicate the results of a previous study using a P300 speller for attention training, as a benchmark comparison. In addition, the effectiveness of personalizing the task difficulty during training will be compared to a nonpersonalized task difficulty adaptation.

Methods: In this single-blind, parallel, 3-arm randomized controlled trial, 45 healthy adults will be recruited and randomly assigned to the experimental group or 1 of 2 control groups. This study involves a single training session, where participants receive neurofeedback training through a P300 speller task. During this training, the task's difficulty is progressively increased, which makes it more difficult for the participants to maintain their performance. This encourages the participants to improve their focus. Task difficulty is either adapted based on the participants' performance (in the experimental group and control group 1) or chosen randomly (in control group 2). Changes in brain patterns before and after training will be analyzed to study the effectiveness of the different approaches. Participants will complete a random dot motion task before and after the training so that any transfer effects of the training to other cognitive tasks can be evaluated. Questionnaires will be used to estimate the participants' fatigue and compare the perceived workload of the training between groups.

Results: This study has been approved by the Maynooth University Ethics Committee (BSRESC-2022-2474456) and is registered on ClinicalTrials.gov (NCT05576649). Participant recruitment and data collection began in October 2022, and we expect to publish the results in 2023.

Conclusions: This study aims to accelerate attention training using iterative learning control in an adaptive P300 speller task, making it a more attractive training option for individuals with cognitive deficits due to its ease of use and speed. The successful replication of the results from the previous study, which used a P300 speller for attention training, would provide further evidence to support the effectiveness of this training tool.

Trial Registration: ClinicalTrials.gov NCT05576649; https://clinicaltrials.gov/ct2/show/NCT05576649.

International Registered Report Identifier (irrid): DERR1-10.2196/46135.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357369PMC
http://dx.doi.org/10.2196/46135DOI Listing

Publication Analysis

Top Keywords

attention training
20
p300 speller
20
training
18
task difficulty
16
neurofeedback training
12
speller task
12
p300-based brain-computer
8
brain-computer interface
8
randomized controlled
8
controlled trial
8

Similar Publications

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

Effective BCDNet-based breast cancer classification model using hybrid deep learning with VGG16-based optimal feature extraction.

BMC Med Imaging

January 2025

Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Problem: Breast cancer is a leading cause of death among women, and early detection is crucial for improving survival rates. The manual breast cancer diagnosis utilizes more time and is subjective. Also, the previous CAD models mostly depend on manmade visual details that are complex to generalize across ultrasound images utilizing distinct techniques.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a multisystem condition that could affect the cutaneous systems, namely cutaneous extraintestinal manifestations (EIMs). It has been suggested that IBD is associated with erythema nodosum (EN), malignant melanoma (MM) and non-melanoma skin cancer (NMSC). However, the potential causal relationship between IBD and the mentioned above cutaneous EIMs is still unclear.

View Article and Find Full Text PDF

The rapid changes in the global environment have led to an unprecedented decline in biodiversity, with over 28% of species facing extinction. This includes snakes, which are key to ecological balance. Detecting snakes is challenging due to their camouflage and elusive nature, causing data loss and feature extraction difficulties in ecological monitoring.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common and deadly forms of cancer worldwide, necessitating accurate and early detection to improve treatment outcomes. Traditional diagnostic methods often rely on manual examination of pathological images, which can be time-consuming and prone to human error. This study presents an advanced approach for colorectal cancer detection using a Random Hinge Exponential Distribution coupled Attention Network (RHED-CANet) on pathological images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!