The recent advent of microfluidic-assisted antibody hit discovery as standard methodology accelerated pharmaceutical research. While work on compatible recombinant antibody library approaches is ongoing, the major source of antibody-secreting cells (ASCs) remains to be primary B cells of mostly rodent origin. As fainting viability and secretion rates can lead to false-negative screening results, careful preparation of these cells is an essential prerequisite for successful hit discovery. We here describe procedures to enrich plasma cells from relevant tissues of mice and rats and plasmablasts from human blood donations. Although freshly prepared ASCs yield the most robust results, suitable freezing and thawing protocols to preserve the viability and antibody secretory function can circumvent extensive process time and allow transferring of samples between laboratories. An optimized procedure is described to yield similar secretion rates after prolonged storage when compared to freshly prepared cells. Finally, the identification of ASC-containing samples can increase the probability of success of droplet-based microfluidics-two methods for pre- or in-droplet staining are described. In summary, the preparative methods described herein can facilitate robust and successful microfluidic antibody hit discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3279-6_17 | DOI Listing |
Acta Pharmacol Sin
January 2025
Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Physics, University of Washington, Seattle, Washington, USA.
Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2025
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
The mammalian cryptochrome proteins (CRY1 and CRY2) are transcriptional repressors most notable for their role in circadian transcriptional feedback. Not all circadian rhythms depend on CRY proteins, however, and the CRY proteins are promiscuous interactors that also regulate many other processes. In cells with chronic CRY deficiency, protein homeostasis is highly perturbed, with a basal increase in cellular stress and activation of key inflammatory signalling pathways.
View Article and Find Full Text PDFMed Chem
January 2025
Department of Pharmacy, Pisa University, Pisa, Italy.
Background: The rise in the frequency of liver cancer all over the world makes it a prominent area of research in the discovery of new drugs or repurposing of existing drugs.
Methods: This article describes the pharmacophore-based structure-activity relationship (3DQSAR) on the secondary metabolites of Alhagi maurorum to inhibit human liver cancer cell lines Hepatocellular carcinoma (HCC) and hepatoma G2 (HepG2) which represents the molecular level understanding for isolated phytochemicals of Alhagi maurorum. The definite features, such as hydrophobic regions, average shape, and active compounds' electrostatic patterns, were mapped to screen phytochemicals.
J Med Chem
January 2025
Medicinal Chemistry Department, Shanghai Haiyan Pharmaceutical Technology Co., Ltd., Pudong New Area, Shanghai 201203, China.
Synthetic lethality offers a robust strategy for discovering the next generation of precision medicine therapies tailored for molecularly defined patient populations. MAT2A inhibition is synthetically lethal in several cancers that exhibit a homozygous deletion of -methyl-5'-thioadenosine phosphorylase (MTAP). Herein, we report the identification of novel MAT2A inhibitors featuring a spiral ring to circumvent the C-N atropisomeric chirality utilizing structure-based drug design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!