Coastal erosion and climate change: A review on coastal-change process and modeling.

Ambio

Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island, St. Peters Bay, Prince Edward Island, C0A 2A0, Canada.

Published: December 2023

Coastal erosion is a normal process of nature. However, the rate of coastal erosion, and the frequency and intensity of coastal flooding events, are now on the rise around the world due to the changing climate. Current responses to coastal erosion are primarily determined by site-specific factors, such as coastal elevation, coastal slope, coastal features, and historical coastline change rate, without a systematic understanding of the coastal-change processes in the context of climate change, including spatiotemporal changes in sea level, regional changes in wave climate, and sea ice coverage. In the absence of a clear understanding of the coastal-change processes, most of the current coastal responses have been built upon a risky assumption (i.e., the present-day coastal change will persist) and are not resilient to future climate change. Here, we conduct a literature review to summarize the latest scientific understanding of the coastal-change processes under climate change and the potential research gaps towards the prediction of future coastal erosion. Our review suggests that a coupled coastal simulation system with a nearshore wave model (e.g., SWAN, MIKE21, etc.) can play a critical role in both the short-term and long-term coastal risk assessment and protective measure development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654294PMC
http://dx.doi.org/10.1007/s13280-023-01901-9DOI Listing

Publication Analysis

Top Keywords

coastal erosion
20
climate change
16
coastal
13
understanding coastal-change
12
coastal-change processes
12
climate
6
change
6
erosion climate
4
change review
4
coastal-change
4

Similar Publications

Asphalt pavement, widely utilized in transportation infrastructure due to its favourable properties, faces significant degradation from chloride salt erosion in coastal areas and winter deicing regions. In this study, two commonly used asphalt binders, 70# base asphalt and SBS (Styrene-Butadiene-Styrene)-modified asphalt, were utilized to study the chloride salt erosion effect on asphalt pavement by immersing materials in laboratory-prepared chloride salt solutions. The conventional properties and adhesion of asphalt were assessed using penetration, softening point, ductility, and pull-off tests, while Fourier transform infrared spectroscopy (FTIR) elucidated the erosion mechanism.

View Article and Find Full Text PDF

This study aims to construct a coastal vulnerability assessment conceptual framework to improve the outcomes of Coastal Vulnerability Index (CVI) for local scale areas. Consequently, a new CVI was created adapted to the specific conditions of the area using seven variables. The new index was named Geotechnical Coastal Vulnerability Index (GCVI) due to the incorporation of two new geotechnical variables: (1) Coastal geotechnical properties and (2) Median grain size distribution.

View Article and Find Full Text PDF

Several methods can be used to mitigate coastal erosion, and one of the leading solutions is known as beach nourishment (BN), which involves using dredged material for nourishment, adding sand to extend an eroding beach. Although it has many advantages, the environmental impacts of BN remain poorly understood, especially on plastic pollution, which had not been investigated until this study. We aimed to compare the abundance and distribution of microplastics (MPs) found in intertidal sediments and specimens of the bivalve mollusks Crassostrea brasiliana, Mytella strigata, Perna perna, and Tivela mactroides, collected in two beaches of Vitoria, Southeast of Brazil (da Costa et al.

View Article and Find Full Text PDF

Rising sea levels under a changing climate will cause permanent inundation, flooding, coastal erosion, and saltwater intrusion. An emerging adaptation response is planned relocation, a directed process of relocating people, assets, and infrastructure to safer locations. Climate-related planned relocation is an unfolding process, yet no longitudinal studies have examined outcomes over time.

View Article and Find Full Text PDF

Mapping of water spread dynamics of a tropical Ramsar wetland of India for conservation and management.

Environ Monit Assess

January 2025

Department of Fisheries Resource Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682506, India.

Wetlands are dynamic ecosystems vital for sustaining ecological health and development at regional and global scales. Geospatial tools have emerged as essential for managing wetland ecosystems. This study assessed the spatiotemporal dynamics of water spread in the Point Calimere Wetland, a coastal Ramsar site located along the Bay of Bengal, India, from 1984 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!