Bioprospection of the bacterial β-myrcene-biotransforming trait in the rhizosphere.

Appl Microbiol Biotechnol

CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal.

Published: August 2023

The biocatalysis of β-myrcene into value-added compounds, with enhanced organoleptic/therapeutic properties, may be performed by resorting to specialized enzymatic machinery of β-myrcene-biotransforming bacteria. Few β-myrcene-biotransforming bacteria have been studied, limiting the diversity of genetic modules/catabolic pathways available for biotechnological research. In our model Pseudomonas sp. strain M1, the β-myrcene catabolic core-code was identified in a 28-kb genomic island (GI). The lack of close homologs of this β-myrcene-associated genetic code prompted a bioprospection of cork oak and eucalyptus rhizospheres, from 4 geographic locations in Portugal, to evaluate the environmental diversity and dissemination of the β-myrcene-biotransforming genetic trait (Myr). Soil microbiomes were enriched in β-myrcene-supplemented cultures, from which β-myrcene-biotransforming bacteria were isolated, belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Sphingobacteriia classes. From a panel of representative Myr isolates that included 7 bacterial genera, the production of β-myrcene derivatives previously reported in strain M1 was detected in Pseudomonas spp., Cupriavidus sp., Sphingobacterium sp., and Variovorax sp. A comparative genomics analysis against the genome of strain M1 found the M1-GI code in 11 new Pseudomonas genomes. Full nucleotide conservation of the β-myrcene core-code was observed throughout a 76-kb locus in strain M1 and all 11 Pseudomonas spp., resembling the structure of an integrative and conjugative element (ICE), despite being isolated from different niches. Furthermore, the characterization of isolates not harboring the Myr-related 76-kb locus suggested that they may biotransform β-myrcene via alternative catabolic loci, being thereby a novel source of enzymes and biomolecule catalogue for biotechnological exploitation. KEY POINTS: • The isolation of 150 Myr bacteria hints the ubiquity of such trait in the rhizosphere. • The Myr trait is spread across different bacterial taxonomic classes. • The core-code for the Myr trait was detected in a novel ICE, only found in Pseudomonas spp.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386936PMC
http://dx.doi.org/10.1007/s00253-023-12650-wDOI Listing

Publication Analysis

Top Keywords

β-myrcene-biotransforming bacteria
12
pseudomonas spp
12
trait rhizosphere
8
76-kb locus
8
myr trait
8
β-myrcene-biotransforming
5
trait
5
β-myrcene
5
pseudomonas
5
myr
5

Similar Publications

Epidemiology of caprine brucellosis in family farms in the south east of Algeria.

Vet Ital

September 2024

Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, Liège, Belgium.

This cross-sectional study aimed to estimate the seroprevalence and the potential risk factors of Brucella infection among goats in family farms in the southern east of Algeria. A total of 196 sera samples were randomly collected from 59 family farms and tested in parallel by Rose Bengal test (RBT) and indirect ELISA (iELISA). A structured questionnaire was used to collect information on potential risk factors.

View Article and Find Full Text PDF

It's easy to remember Salmonella serotypes names, isn't it? Surely, this is because the naming system of Salmonella serotypes is by far the most scientist friendly. Traditionally, most Salmonella serotypes have been named after geographic locations. We decided to explore the geographic locations to which Salmonella serotypes refer and describe some unexpected twists in the naming scheme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!