A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning for Predicting Clinician Evaluation of Treatment Plans for Left-Sided Whole Breast Radiation Therapy. | LitMetric

Purpose: The objective of this work was to investigate the ability of machine learning models to use treatment plan dosimetry for prediction of clinician approval of treatment plans (no further planning needed) for left-sided whole breast radiation therapy with boost.

Methods And Materials: Investigated plans were generated to deliver a dose of 40.05 Gy to the whole breast in 15 fractions over 3 weeks, with the tumor bed simultaneously boosted to 48 Gy. In addition to the manually generated clinical plan of each of the 120 patients from a single institution, an automatically generated plan was included for each patient to enhance the number of study plans to 240. In random order, the treating clinician retrospectively scored all 240 plans as (1) approved without further planning to seek improvement or (2) further planning needed, while being blind for type of plan generation (manual or automated). In total, 2 × 5 classifiers were trained and evaluated for ability to correctly predict the clinician's plan evaluations: random forest (RF) and constrained logistic regression (LR) classifiers, each trained for 5 different sets of dosimetric plan parameters (feature sets [FS]). Importances of included features for predictions were investigated to better understand clinicians' choices.

Results: Although all 240 plans were in principle clinically acceptable for the clinician, only for 71.5% was no further planning required. For the most extensive FS, accuracy, area under the receiver operating characteristic curve, and Cohen's κ for generated RF/LR models for prediction of approval without further planning were 87.2 ± 2.0/86.7 ± 2.2, 0.80 ± 0.03/0.86 ± 0.02, and 0.63 ± 0.05/0.69 ± 0.04, respectively. In contrast to LR, RF performance was independent of the applied FS. For both RF and LR, whole breast excluding boost PTV (PTV) was the most important structure for predictions, with importance factors of 44.6% and 43%, respectively, dose recieved by 95% volume of PTV (D) as the most important parameter in most cases.

Conclusions: The investigated use of machine learning to predict clinician approval of treatment plans is highly promising. Including nondosimetric parameters could further increase classifiers' performances. The tool could become useful for aiding treatment planners in generating plans with a high probability of being directly approved by the treating clinician.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316432PMC
http://dx.doi.org/10.1016/j.adro.2023.101228DOI Listing

Publication Analysis

Top Keywords

machine learning
12
treatment plans
12
plans
8
left-sided breast
8
breast radiation
8
radiation therapy
8
clinician approval
8
approval treatment
8
planning needed
8
treating clinician
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!