Background: Inflammation plays a crucial role in the development of diabetic cardiomyopathy (DCM), including inflammation caused by high-glucose and high-lipid (HGHL). Targeting inflammation may provide a useful strategy for preventing and treating DCM. Puerarin has been shown to reduce the inflammation, apoptosis and hypertrophy of cardiomyocytes induced by HGHL, in which this study aims to investigate the underlying mechanisms.

Methods: H9c2 cardiomyocytes cultured with HGHL were used to establish a cell model of DCM. Puerarin was then placed to these cells for 24 hours. The effects of HGHL and puerarin on cell viability and apoptosis were investigated by the Cell Proliferation, Toxicity Assay Kit (CCK-8) and flow cytometry. Morphological changes of cardiomyocytes was observed by HE staining. CAV3 proteins in H9c2 cardiomyocytes were altered by transient transfection of CAV3 siRNA. IL-6 was detected by ELISA. The Western blot was performed to determine the CAV3, Bcl-2, Bax, pro-Caspase-3, cleaved-Caspase-3, NF-κB (p65) and p38MAPK proteins.

Results: Puerarin treatment reversed the cells viability, hypertrophy in morphology, inflammation (showed by p-p38 and p-p65 and IL-6) and apoptosis-related damage (showed by cleaved-Caspase-3/pro-Caspase-3/Bax, Bcl-2 and flow cytometry) of the H9c2 cardiomyocyte caused by HGHL. Puerarin treatment also restored the decrease of CAV3 proteins of the H9c2 cardiomyocyte caused by HGHL. When silenced the expression of CAV3 proteins with SiRNA, puerarin failed to decreased p-p38 and p-p65 and IL-6, and could not reversed cell viability and morphological damage. In contrast to the simple CAV3 silenced group, the CAV3 silenced with NF-κB pathway or p38MAPK pathway inhibitors, significantly downregulated the p-p38, p-p65 and IL-6.

Conclusion: Puerarin upregulated CAV3 protein expression in H9c2 cardiomyocytes and inhibited the NF-κB and p38MAPK pathways, thereby reducing HGHL-induced inflammation and may related to the apoptosis and hypertrophy of cardiomyocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317540PMC
http://dx.doi.org/10.2147/JIR.S408681DOI Listing

Publication Analysis

Top Keywords

h9c2 cardiomyocytes
16
cav3 proteins
12
p-p38 p-p65
12
cav3
9
puerarin
8
cav3 protein
8
dcm puerarin
8
inflammation apoptosis
8
apoptosis hypertrophy
8
hypertrophy cardiomyocytes
8

Similar Publications

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

We investigated the protective effect of the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC) on cardiomyocyte injury induced by HCN1 channel overexpression, and explored the underlying mechanisms. An HCN1 overexpression vector was constructed and transfected into H9C2 cells, followed by PDTC treatment. The experiments comprised the following groups: control, control + PDTC, overexpression negative control, HCN1 overexpression (HCN1-OE), and combined HCN1-OE + PDTC groups.

View Article and Find Full Text PDF

Total glucosides of paeony (TGP) have been investigated for their effects on cardiomyocyte hypertrophy induced by angiotensin II (Ang II). In this study, rat cardiomyocyte H9c2 cells were treated with various doses of TGP (0, 12.5, 25, 50, 100, 200, and 400 μmol/L), and cell viability was assessed using the MTT method to determine an optimal dose.

View Article and Find Full Text PDF

Objectives: To explore the mechanism that mediate the therapeutic effect of quercetin on heart failure.

Methods: We searched the TCMSP and Swiss ADME databases for the therapeutic targets of quercetin and retrieved heart failure targets from the Genecards and OMIM databases. The intersecting targets were analyzed with GO and KEGG pathway analysis using DAVID database, and the key genes were identified PPI analysis.

View Article and Find Full Text PDF

Objectives: To investigate the mechanism through which N-acetylneuraminic acid (Neu5Ac) exacerbates hypoxia/reoxygenation (H/R) injury in rat cardiomyocytes (H9C2 cells).

Methods: H9C2 cells were cultured in hypoxia and glucose deprivation for 8 h followed by reoxygenation for different durations to determine the optimal reoxygenation time. Under the optimal H/R protocol, the cells were treated with 0, 5, 10, 20, 30, 40, 50, and 60 mmol/L Neu5Ac during reoxygenation to explore the optimal drug concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!