Background/purpose: Naturally derived collagen crosslinkers with matrix metalloproteinases (MMPs) inhibitory activity for dentin bonding have been previously studied. One of these crosslinkers is flavonoids. The purpose of this study was to investigate whether dentin pretreatment with kaempferol (KEM), one of the flavonoids, enhances dentin bond stability and nanoleakage at the dentin-resin interface through MMPs inhibition and collagen crosslinking.

Materials And Methods: The experimental KEM-containing solution was used to pretreat demineralized dentin prior to the application of a universal adhesive. KEM is a natural flavonoid and those which did not take the experimental solution served as the control group (CON). Microtensile bond strength (μTBS) and nanoleakage tests were conducted before and after the thermocycling to evaluate the influence of KEM on dentin bond strength. The MMPs inhibition activity of KEM was analyzed via MMPs zymography using a confocal microscopy. Fourier-transform infrared (FTIR) spectroscopy was used to demonstrate that KEM inhibits MMPs and enhances collagen crosslinking.

Results: The μTBS values of KEM group exhibited a higher bond strength after thermocycling. At the resin-dentin interface, the KEM group did not exhibit any signs of nanoleakage after thermocycling. Furthermore, MMPs zymography confirmed that there was a relatively low activity of MMPs in the presence of KEM. In FTIR analysis, the PO peak representing the cross-link between dentin and collagen was significantly higher in the KEM group.

Conclusion: Our findings suggest that pretreatment with KEM enhances the dentin bonding stability at the resin-dentin interface by acting as a collagen crosslinker and MMPs inhibitor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316434PMC
http://dx.doi.org/10.1016/j.jds.2022.12.002DOI Listing

Publication Analysis

Top Keywords

dentin bonding
12
bond strength
12
kem
10
bonding stability
8
matrix metalloproteinases
8
inhibition collagen
8
dentin
8
mmps
8
enhances dentin
8
dentin bond
8

Similar Publications

Objective: This study evaluated dentin morphology and pulp cavity temperature changes during nanosecond‑ and microsecond‑pulse Er, Cr: YSGG laser debonding restoration and residual adhesive.

Materials And Methods: Ten caries-free teeth had their enamel removed perpendicular to the long axis, followed by bonding of glass ceramic restorations. The samples were randomly divided into two groups and subjected to Er, Cr: YSGG laser (3 mJ, 100 Hz, 100 ns), (3 mJ, 100 Hz, 150 µs) for debonding of restoration and residual adhesive on dentin surfaces.

View Article and Find Full Text PDF

Aims: This pilot study aimed to compare the marginal adaptation of composite resin at the tooth-restoration interface, before and after radiation.

Subjects And Methods: Fifteen extracted premolars were divided into 2 experimental groups (based on the timing of irradiation) and 1 control group of 5 teeth each. In Group I (control group), teeth were restored but not exposed to radiation at any stage, Group II: teeth were irradiated before cavity preparation and restoration, and Group III: after cavity preparation and restoration employing selective etch technique, teeth were exposed to radiation.

View Article and Find Full Text PDF

Objective: Investigation of the mechanical properties of occlusal veneers made from zirconia with varying translucency, bonded to different tooth substrates.

Materials And Methods: Sixty-four extracted molars were divided into two groups: preparation within enamel (E) or extending into dentin (D). Veneers were milled from four zirconia ceramics (n = 8): 5Y-TZP (HT), a multilayer of 5 and 3Y-TZP (GT), 3Y-TZP (LT), and 4Y-TZP (MT).

View Article and Find Full Text PDF

Objective: Chemicals used during canal disinfection and endodontic sealers have a deleterious effect on dentin bond strength. The aim of this study was to evaluate a novel clinical sequence to improve the resin-dentin microtensile bond strength (μTBS) to endodontically treated teeth.

Materials And Methods: Twenty human molars were distributed in four experimental groups (n = 5, N = 20): C-control group without exposure to any endodontic chemical substances (2.

View Article and Find Full Text PDF

Objectives: To evaluate the shear bond strength (SBS) of universal cements (UCs) to dentin prepared with different diamond burs using various adhesive strategies.

Materials And Methods: One-hundred-twenty molars were prepared to expose the mid-coronal dentin. The teeth were divided into two groups according to diamond bur preparations: coarse and super-fine grit burs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!