A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biocompatibility and mineralization activity of modified glass ionomer cement in human dental pulp stem cells. | LitMetric

Background/purpose: Fortilin is a multi-functional protein involved in several cellular processes. It has been shown promising potential to be a bioactive molecule that can be incorporated in the dental materials. This study aimed to compare the biocompatibility and mineralization activities of modified glass ionomer cement (Bio-GIC) and Biodentine by direct and indirect method on human dental pulp stem cells (hDPSCs).

Materials And Methods: Conventional glass ionomer cement (GIC), Bio-GIC (GIC supplemented with chitosan, tricalcium phosphate, and recombinant fortilin from ), and Biodentine were examined in this study. Recombinant fortilin was purified and tested for its cytotoxicity by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) assay. Human DPSCs were treated with different material eluate for particular time intervals. At given time points, viability of hDPSCs was examined using MTT assay and calcium deposition was assessed by Alizarin red staining assay. Comparisons of the data among groups were analyzed by analysis of variance and Tukey's multiple comparisons.

Results: All test materials demonstrated no cytotoxicity. In addition, Bio-GIC promoted cell proliferation at 72 h. For direct and indirect method, cells treated with Bio-GIC demonstrated significantly higher calcium deposition than other groups ( < 0.05).

Conclusion: Bio-GIC and Biodentine are not cytotoxic to hDPSCs. Bio-GIC demonstrates enhanced calcium deposition comparable to Biodentine. Bio-GIC may be further developed as a bioactive material for dentin regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316452PMC
http://dx.doi.org/10.1016/j.jds.2022.11.024DOI Listing

Publication Analysis

Top Keywords

glass ionomer
12
ionomer cement
12
biocompatibility mineralization
8
modified glass
8
human dental
8
dental pulp
8
pulp stem
8
stem cells
8
direct indirect
8
indirect method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!