Sea stars resist wasting through active immune and collagen systems.

Proc Biol Sci

Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405, USA.

Published: July 2023

Epidemics are becoming more common and severe, however, pinpointing the causes can be challenging, particularly in marine environments. The cause of sea star wasting (SSW) disease, the ongoing, largest known panzootic of marine wildlife, is unresolved. Here, we measured gene expression longitudinally of 24 adult sea stars, collected from a recovered site, as they remained asymptomatic (8 individuals) or naturally progressed through SSW (16 individuals) in individual aquaria. Immune, tissue integrity and pro-collagen genes were more highly expressed in asymptomatic relative to wasting individuals, while hypoxia-inducible factor 1-α and RNA processing genes were more highly expressed in wasting relative to asymptomatic individuals. Integrating microbiome data from the same tissue samples, we identified genes and microbes whose abundance/growth was associated with disease status. Importantly, sea stars that remained visibly healthy showed that laboratory conditions had little effect on microbiome composition. Lastly, considering genotypes at 98 145 single-nucleotide polymorphism, we found no variants associated with final health status. These findings suggest that animals exposed to the cause(s) of SSW remain asymptomatic with an active immune response and sustained control of their collagen system while animals that succumb to wasting show evidence of responding to hypoxia and dysregulation of RNA processing systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320347PMC
http://dx.doi.org/10.1098/rspb.2023.0347DOI Listing

Publication Analysis

Top Keywords

sea stars
12
active immune
8
asymptomatic individuals
8
genes highly
8
highly expressed
8
rna processing
8
wasting
5
sea
4
stars resist
4
resist wasting
4

Similar Publications

A Chiral Sensing Platform Based on a Starfish-Shaped AuCu Alloy for Chiral Analysis.

Anal Chem

January 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

Designing alloys with intrinsic chirality for chiral analysis is an interesting subject, since most alloys are achiral. Here, a starfish-shaped AuCu alloy is facilely prepared through simultaneous reduction of chloroauric acid (HAuCl) and copper chloride (CuCl) by l-ascorbic acid (l-AA). The resultant AuCu alloy exhibits fascinating chirality due to the chiral lattice distortion generated in the alloy.

View Article and Find Full Text PDF

Sex determination systems are diverse in echinoderms, however, our understanding is still very limited in this research field, especially for Asteroidea species. The northern Pacific seastar, Asterias amurensis, has attracted widespread concern due to its population outbreaks and high-risk invasions. Using whole-genome re-sequencing data from 40 females and 40 males, we identified a candidate sex determination region in A.

View Article and Find Full Text PDF

We compared referrals and connection to care between perinatal patients: 90 receiving OB/GYN care in clinics with integrated behavioral health consultants with infant mental health specialization (IMH-BHC), and 68 receiving traditional care, in the United States. Participants identified as: Native American/Alaskan native, 1.90%; Asian, .

View Article and Find Full Text PDF

Recycling of Uridylated mRNAs in Starfish Embryos.

Biomolecules

December 2024

Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan.

In eukaryotes, mRNAs with long poly(A) tails are translationally active, but deadenylation and uridylation of these tails generally cause mRNA degradation. However, the fate of uridylated mRNAs that are not degraded quickly remains obscure. Here, using tail-seq and microinjection of the 3' region of mRNA, we report that some mRNAs in starfish are re-polyadenylated to be translationally active after deadenylation and uridylation.

View Article and Find Full Text PDF

The timing of metamorphosis and settlement is critical for the survival and reproductive success of marine animals with biphasic life cycles. Thyroid hormones (THs) regulate developmental timing in diverse groups of chordates, including the regulation of metamorphosis in amphibians, teleosts, lancelets, tunicates, and lampreys. Recent evidence suggests a role for TH regulation of metamorphosis outside of the chordates, including echinoderms, annelids, and molluscs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!