A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HRFSVM: identification of fish disease using hybrid Random Forest and Support Vector Machine. | LitMetric

HRFSVM: identification of fish disease using hybrid Random Forest and Support Vector Machine.

Environ Monit Assess

Electrical and Electronics Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India.

Published: July 2023

Aquaculture fish diseases pose a serious threat to the security of food supplies. Fish species vary widely, and because they resemble one another so much, it is challenging to distinguish between them based solely on appearance. To stop the spread of disease, it is important to identify sick fish as soon as possible. Due to a lack of necessary infrastructure, it is still difficult to identify infected fish in aquaculture at an early stage. It is essential to promptly identify sick fish to stop the spread of disease. The purpose of this work is to suggest a machine learning technique based on the DCNN method for identifying and categorizing fish diseases. To solve problems involving global optimization, this paper suggests a brand-new hybrid algorithm called the Whale Optimization Algorithm with Genetic Algorithm (WOA-GA) and Ant Colony Optimization. In this work, for classification, the hybrid Random Forest algorithm is used. To facilitate the increased quality, distinctions between both the proposed WOA-GA-based DCNN architecture and the presently used methods for machine learning have been made. The effectiveness of the proposed detection technique is done with MATLAB. Performance metrics like sensitivity, specificity, accuracy, precision, recall, F-measure, NPV, FPR, FNR, and MCC are compared to the performance of the proposed technique.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-023-11472-7DOI Listing

Publication Analysis

Top Keywords

hybrid random
8
random forest
8
fish diseases
8
spread disease
8
identify sick
8
sick fish
8
machine learning
8
fish
7
hrfsvm identification
4
identification fish
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!