A far-red absorbing sensitizer, BF -chelated azadipyrromethane (azaBODIPY) has been employed as an electron acceptor to synthesize a series of push-pull systems linked with different nitrogenous electron donors, viz., N,N-dimethylaniline (NND), triphenylamine (TPA), and phenothiazine (PTZ) via an acetylene linker. The structural integrity of the newly synthesized push-pull systems was established by spectroscopic, electrochemical, spectroelectrochemical, and DFT computational methods. Cyclic and differential pulse voltammetry studies revealed different redox states and helped in the estimation of the energies of the charge-separated states. Further, spectroelectrochemical studies performed in a thin-layer optical cell revealed diagnostic peaks of azaBODIPY⋅ in the visible and near-IR regions. Free-energy calculations revealed the charge separation from one of the covalently linked donors to the azaBODIPY* to yield Donor⋅ -azaBODIPY⋅ to be energetically favorable in a polar solvent, benzonitrile, and the frontier orbitals generated on the optimized structures helped in assessing such a conclusion. Consequently, the steady-state emission studies revealed quenching of the azaBODIPY fluorescence in all of the investigated push-pull systems in benzonitrile and to a lesser extent in mildly polar dichlorobenzene, and nonpolar toluene. The femtosecond pump-probe studies revealed the occurrence of excited charge transfer (CT) in nonpolar toluene while a complete charge separation (CS) for all three push-pull systems in polar benzonitrile. The CT/CS products populated the low-lying azaBODIPY* prior to returning to the ground state. Global target (GloTarAn) analysis of the transient data revealed the lifetime of the final charge-separated states (CSS) to be 195 ps for NND-derived, 50 ps for TPA-derived, and 85 ps for PTZ-derived push-pull systems in benzonitrile.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202301659DOI Listing

Publication Analysis

Top Keywords

push-pull systems
24
charge separation
12
studies revealed
12
charge-separated states
8
systems benzonitrile
8
nonpolar toluene
8
push-pull
6
systems
6
revealed
6
far-red excitation
4

Similar Publications

Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.

View Article and Find Full Text PDF

Unlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.

View Article and Find Full Text PDF

Over the last five decades, diimine rhenium(I) tricarbonyl complexes have been extensively investigated due to their remarkable and widely tuned photophysical properties. These systems are regarded as attractive targets for design functional luminescent materials and performing fundamental studies of photoinduced processes in transition metal complexes. This review summarizes the latest developments concerning Re(I) tricarbonyl complexes bearing donor-acceptor (D-A) and donor-π-acceptor (D-π-A) ligands.

View Article and Find Full Text PDF

Maize productivity has remained low and has worsened in the wake of a changing climate, resulting in new invasive pests, with pests that were earlier designated as minor becoming major and with pathogens being transported by pests and/or entering their feeding sites. A study was conducted in 2021 in the Kisumu and Makueni counties, Kenya, to determine how different maize cropping systems affect insect diversity, insect damage to maize, and insects' ability to spread mycotoxigenic fungi in pre-harvest maize. The field experiments used a randomized complete block design, with the four treatments being maize monocrop, maize intercropped with beans, maize-bean intercrop with the addition of at planting, and push-pull technology.

View Article and Find Full Text PDF

Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination.

ACS Nano

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!