The Bin/amphiphysin/Rvs (BAR) superfamily proteins have a crescent binding domain and bend biomembranes along the domain axis. However, their anisotropic bending rigidities and spontaneous curvatures have not been experimentally determined. Here, we estimated these values from the bound protein densities on tethered vesicles using a mean-field theory of anisotropic bending energy and orientation-dependent excluded volume. The dependence curves of the protein density on the membrane curvature are fitted to the experimental data for the I-BAR and N-BAR domains reported by C. Prévost ., 2015, 6, 8529 and F.-C. Tsai , 2021, 17, 4254-4265, respectively. For the I-BAR domain, all three density curves of different chemical potentials exhibit excellent fits with a single parameter set of anisotropic bending energy. When the classical isotropic bending energy is used instead, one of the curves can be fitted well, but the others exhibit large deviations. In contrast, for the N-BAR domain, two curves are not well fitted simultaneously the anisotropic model, although it is significantly improved compared to the isotropic model. This deviation likely suggests a cluster formation of the N-BAR domains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm00340j | DOI Listing |
Ultrasonics
January 2025
Department of Civil Engineering and Architecture, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia. Electronic address:
Pipe bends are recognized as critical areas susceptible to wall thinning, a phenomenon instigated by abrupt changes in the fluid flow direction and velocity. Conventional monitoring techniques for bends typically depend on localized ultrasonic measurements of thickness. While these methods are effective, they can be time-consuming compared to the use of permanently installed transducers, a strategy employed in guided wave tomography (GWT).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.
View Article and Find Full Text PDFOpen Vet J
November 2024
Orthopedics Unit, "Dr. Victor Popescu" Emergency Military Hospital, Timisoara, România.
Background: Cancellous bone mechanical properties are directly linked to structural integrity, which is a result of bone quantity, the quality of its bone matrix, and its microarchitecture. Several studies highlighted the bone behavior under specific loads, contributing to understanding risk factors and developing more effective therapeutic strategies. The anatomy and stability of iliac bone fractures, providing insight into pelvic trauma management.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
Soft actuators are limited by single-mode driving technology, which poses challenges in dealing with complex and multidimensional movements. In this study, a multiresponsive soft actuator was fabricated by integrating a microwrinkling structure into an MXene-based film, enabling programmable motions. To achieve this, we introduced -hexane into the film preparation process and utilized its rapid volatilization to accelerate the shrinkage difference between the film and the substrate.
View Article and Find Full Text PDFNano Lett
January 2025
NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States.
Tin (Sn)-based two-dimensional (2D) materials exhibit intriguing mechanical and optoelectrical properties owing to their non-centrosymmetric crystallinity and tunable band structures. A judicious integration of these individually decoupled properties is projected to introduce unparalleled functionalities into them, which remain largely unexplored. Herein, we develop wafer-scale tin selenide (SnSe, 0 < < 1) 2D layers composed of thermodynamically stable coexisting phases of SnSe and SnSe with distinct functionalities and identify a strong interplay between their mechanical and optoelectrical characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!