The unique solid-solution structure and multi-element compositions of high-entropy alloy nanoparticles (HEA NPs) have garnered substantial attention. Various methods have been developed to prepare a diverse array of HEA NPs using different substrates for support and stabilization. In this study, we present a facile surface-mediated reduction method to prepare HEA NPs (AuAgCuPdPt) decorated germanane (HEA NPs@GeNSs), and employ X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) to characterize their structure, composition, and morphology. Subsequently, we demonstrate that the HEA NPs can be liberated from the surfaces of GeNSs as freestanding systems straightforward exposure to UV light. We also explore germanium nanoparticles (GeNPs) as an alternative substrate for HEA NP formation/production, given their similarity to germanane and their Ge-H surface. Finally, we extend our investigation to bulk Ge wafers and demonstrate successful deposition of HEA NPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nh00178d | DOI Listing |
Nat Commun
January 2025
School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia.
High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Condensed Matter Physics, Faculty of Physics, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran.
Research on hydroxyapatite (HAP) coatings for bone tissue applications has been investigated for decades due to their significant osteoconductive and bioactivity properties. HAP closely resembles the mineral component of human bone, making it ideal for biomedical applications such as implants. This study investigates the synthesis of hydroxyapatite nanoparticles (HAP-NPs) via the microemulsion method, which is essential for creating HAP coatings on the Ti-6Al-4V substrate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
RSC Adv
October 2024
School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur West Bengal India.
This article highlights (FeCoNiCuMn)O high-entropy oxide prepared liquid state induction melting techniques for supercapacitor application. Nanostructured high entropy oxides have higher active sites to boost the surface redox process with transition metal cations, such as Fe, Mn, Ni, Co, and Cu, which helps to improve specific power, long-term cyclic stability, and specific capacitance. Melted and ball-milled HEA Nps were annealed to form the high entropy oxide, which uses a positive electrode for supercapacitor application; this results in the highest specific capacitance of 313 F g for a current rate of 5 mV s for the optimized 3 M KOH electrolyte.
View Article and Find Full Text PDFLight Sci Appl
September 2024
Research Centre for Laser Extreme Manufacturing, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!