Antimicrobial or antioxidant active packaging (AP) is an emerging technology in which a bioactive antimicrobial or antioxidant agent is incorporated into the packaging material to protect the contained product during its shelf life from deterioration. The important issue in AP is making a balance between the deterioration rate of the food product and the controlled release of the bioactive agent. So, the AP fabrication should be designed in such a way that fulfills this goal. Modeling the controlled release is an effective way to avoid trial and error and time-consuming experimental runs and predict the release behavior of bioactive agents in different polymeric matrices and food/food simulants. To review the release of bioactive compounds from AP, in the first part of this review we present an introductory explanation regarding the release controlling approaches in AP. Then the release mechanisms are explained which are very important in defining the appropriate modeling approach and also the interpretation of the modeling results. Different release profiles that might be observed in different packaging systems are also introduced. Finally, different modeling approaches including empirical and mechanistic techniques are covered and the recent literature regarding the utilization of such approaches to help design new AP is thoroughly studied.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2023.2228413DOI Listing

Publication Analysis

Top Keywords

antimicrobial antioxidant
8
controlled release
8
release bioactive
8
release
7
modeling
5
control release
4
release active
4
active packaging/coating
4
packaging/coating food
4
food products
4

Similar Publications

This study has developed a pressure sensor array based on four functionalized DNA-nanoenzymes with catalase-like activity for multiple detections of foodborne pathogens through a portable pressure manometer. Benefiting from functionalization of 4-mercaptophenylboronic acid and β-mercaptoethylamine, the diversity of nonspecific interactions between four DNA-nanoenzymes and each of the nine bacteria leads to differences in pressure response patterns by catalyzing HO to generate exclusive "fingerprints". As effective statistical tools for processing multivariate data, principal component analysis and hierarchical clustering analysis are employed to identify nine foodborne pathogens by analyzing pressure response patterns.

View Article and Find Full Text PDF

Effective adaptation of flight muscles to tebuconazole-induced oxidative stress in honey bees.

Heliyon

January 2025

Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary.

The widespread and excessive agricultural use of azole fungicide tebuconazole poses a major threat to pollinator species including honey bee colonies as highlighted by recent studies. This issue is of growing importance, due to the intensification of modern agriculture and the increasing amount of the applied chemicals, serving as a major and recent problem from both an ecotoxicological and an agricultural point of view. The present study aims to detect the effects of acute sublethal tebuconazole exposure focusing on the redox homeostasis of honey bee flight muscles.

View Article and Find Full Text PDF

Synthesis, characterization and biological profile of some new dihydropyrimidinone derivaties.

Heliyon

January 2025

Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan, 44000.

Objective: The rise of drug-resistant bacteria, viruses, and fungi has prompted the search for new drugs without cross-resistance to current treatments. As a result, the aim of this research was to synthesize various types of dihydropyrimidinones heterocyclic compounds and screened them for their antibiotic properties.

Methodology: Newly synthesized dihydropyrimidinone derivatives were characterized spectroscopically using proton NMR (HNMR), and FT-IR.

View Article and Find Full Text PDF

Insights into bioactivity guided chemical profiling of Mill. fruits wild-growing in Montenegro.

Heliyon

January 2025

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108, Belgrade, Serbia.

Jujube ( Mill.) is a highly abundant wild-growing plant in Montenegro. It has been utilized since old times for various bioactive properties by the natives, however its detailed chemical characterization, antimicrobial, antioxidant and cytotoxic potential have not been extensively explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!