Nonalcoholic steatohepatitis (NASH) and hepatic fibrosis are leading causes of cirrhosis with rising morbidity and mortality worldwide. Currently, there is no appropriate treatment for NASH and hepatic fibrosis. Many studies have shown that oxidative stress is a main factor inducing NASH. Nomilin (NML) and obacunone (OBA) are limonoid compounds naturally occurring in citrus fruits with various biological properties. However, whether OBA and NML have beneficial effects on NASH remains unclear. Here, we demonstrated that OBA and NML inhibited hepatic tissue necrosis, inflammatory infiltration and liver fibrosis progression in methionine and choline-deficient (MCD) diet, carbon tetrachloride (CCl )-treated and bile duct ligation (BDL) NASH and hepatic fibrosis mouse models. Mechanistic studies showed that NML and OBA enhanced anti-oxidative effects, including reduction of malondialdehyde (MDA) level, increase of catalase (CAT) activity and the gene expression of glutathione S-transferases (GSTs) and Nrf2-keap1 signaling. Additional, NML and OBA inhibited the expression of inflammatory gene interleukin 6 (Il-6), and regulated the bile acid metabolism genes Cyp3a11, Cyp7a1, multidrug resistance-associated protein 3 (Mrp3). Overall, these findings indicate that NML and OBA may alleviate NASH and liver fibrosis in mice via enhancing antioxidant and anti-inflammation capacity. Our study proposed that NML and OBA may be potential strategies for NASH treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biof.1987DOI Listing

Publication Analysis

Top Keywords

nash hepatic
16
hepatic fibrosis
16
nml oba
16
nash
8
alleviate nash
8
fibrosis mice
8
mice enhancing
8
enhancing antioxidant
8
antioxidant anti-inflammation
8
anti-inflammation capacity
8

Similar Publications

Background: The emerging incidence of pathogenic liver conditions is turning into a major concern for global health. Induction of pyroptosis in hepatocytes instigates cellular disintegration, which in turn liberates substantial quantities of pro-inflammatory intracellular substances, thereby accelerating the advancement of liver fibrosis. Consequently, directing therapeutic efforts towards inhibiting pyroptosis could potentially serve as an innovative approach in managing inflammation related chronic hepatic disorders.

View Article and Find Full Text PDF

Background: Insulin resistance (IR) is central to the progression of non-alcoholic fatty liver disease (MAFLD). While aerobic exercise reduces hepatic fat and enhances insulin sensitivity, the specific mechanisms-particularly those involving exosomal pathways-are not fully elucidated.

Method: Exosomes were isolated from 15 MAFLD patients' plasma following the final session of a 12-week aerobic exercise intervention.

View Article and Find Full Text PDF

Regulation of bile acids and their receptor FXR in metabolic diseases.

Front Nutr

December 2024

Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.

High sugar, high-fat diets and unhealthy lifestyles have led to an epidemic of obesity and obesity-related metabolic diseases, seriously placing a huge burden on socio-economic development. A deeper understanding and elucidation of the specific molecular biological mechanisms underlying the onset and development of obesity has become a key to the treatment of metabolic diseases. Recent studies have shown that the changes of bile acid composition are closely linked to the development of metabolic diseases.

View Article and Find Full Text PDF

Objectives: To investigate the therapeutic effect of Exocarpium Citri Grandis formula granules (ECGFG) on fatty liver disease (FLD) in zebrafish and explore the underlying mechanism.

Methods: Nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD) models were established in zebrafish larvae at 3 days post fertilization (dpf), in which the treatment efficacy of 16, 32, or 64 μg/mL ECGFG was evaluated by examining zebrafish survival and liver pathologies and using whole-fish oil red O staining and RT-qPCR. The therapeutic mechanism of ECGFG for FLD was investigated using Prussian blue staining, DCFH-DA probe, MDA content detection, RT-qPCR assay and immunohistochemical staining for CAV1.

View Article and Find Full Text PDF

Non-alcoholic steatohepatitis (NASH) is the most common cause of chronic liver diseases with its pathophysiological mechanism poorly understood. In this work, serological, histological, molecular biological, biochemical, and immunological methods were applied to explore the pathological significance and action of zinc finger protein 281 (ZFP281 in mouse, ZNF281 in human) and targeted strategies. We reported that ZFP281/ZNF281 abundance in hepatocytes was positively correlated with the progression of NASH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!