Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
5,15-Dioxaporphyrin (DOP) is a novel meso-oxaporphyrin analogue and exhibits unique 20π-antiaromaticity, unlike its mother congener of 18π-aromatic 5-oxaporphyrin, commonly known as its cationic iron complex called verdohem, which is a key intermediate of heme catabolism. To reveal its reactivities and properties as an oxaporphyrin analogue, the oxidation of tetra-β-arylated DOP (DOP-Ar ) was explored in this study. Stepwise oxidation from the 20π-electron neutral state was achieved, and the corresponding 19π-electron radical cation and 18π-electron dication were characterized. Further oxidation of the 18π-aromatic dication resulted in the formation of a ring-opened dipyrrindione product by hydrolysis. Considering a similar reaction of verdoheme to ring-opened biliverdin in the heme degradation in nature, the current result consolidates the ring-opening reactivity of oxaporphyrinium cation species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202307862 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!